
PySwarms Documentation
Release 1.0.2

Lester James V. Miranda

May 01, 2019

General

1 Launching pad 3
1.1 Introduction . 3
1.2 Features . 4
1.3 Installation . 5
1.4 Credits . 6
1.5 History . 6
1.6 Tutorials . 9
1.7 Use-cases . 22
1.8 Contributing . 31
1.9 Understanding the PySwarms API . 33
1.10 Writing your own optimization loop . 34
1.11 Contributing your own optimizer . 35
1.12 Backend . 37
1.13 Base Classes . 56
1.14 Optimizers . 59
1.15 Utilities . 67

2 Indices and tables 83

Bibliography 85

Python Module Index 87

i

ii

PySwarms Documentation, Release 1.0.2

It is intended for swarm intelligence researchers, practitioners, and students who prefer a high-level declarative
interface for implementing PSO in their problems. PySwarms enables basic optimization with PSO and interaction
with swarm optimizations. Check out more features below!

• Free software: MIT license

• Github repository: https://github.com/ljvmiranda921/pyswarms

• Python versions: 3.5 and 3.6

General 1

https://badge.fury.io/py/pyswarms
https://dev.azure.com/ljvmiranda/ljvmiranda/_build/latest?definitionId=1&branchName=master
https://pyswarms.readthedocs.io/en/latest/?badge=latest
https://raw.githubusercontent.com/ljvmiranda921/pyswarms/master/LICENSE
https://doi.org/10.21105/joss.00433
https://github.com/ljvmiranda921/pyswarms

PySwarms Documentation, Release 1.0.2

2 General

CHAPTER 1

Launching pad

• If you don’t know what Particle Swarm Optimization is, read up this short Introduction! Then, if you plan
to use PySwarms in your project, check the Installation guide and use-case examples.

• If you are a researcher in the field of swarm intelligence, and would like to include your technique in our list
of optimizers, check our contributing page to see how to implement your optimizer using the current base
classes in the library.

• If you are an open-source contributor, and would like to help PySwarms grow, be sure to check our Issues
page in Github, and see the open issues with the tag help-wanted. Moreover, we accommodate contributions
from first-time contributors! Just check our first-timers-only tag for open issues (Don’t worry! We’re happy
to help you make your first PR!).

1.1 Introduction

1.1.1 It’s all a treasure hunt

Imagine that you and your friends are looking for a treasure together. The treasure is magical, and it rewards not
only the one who finds it, but also those near to it. Your group knows, approximately, where the treasure is, but
not exactly sure of its definite location.

Your group then decided to split up with walkie-talkies and metal detectors. You use your walkie-talkie to inform
everyone of your current position, and the metal detector to check your proximity to the treasure. In return, you
gain knowledge of your friends’ positions, and also their distance from the treasure.

As a member of the group, you have two options:

• Ignore your friends, and just search for the treasure the way you want it. Problem is, if you didn’t find it,
and you’re far away from it, you get a very low reward.

• Using the information you gather from your group, coordinate and find the treasure together. The best way
is to know who is the one nearest to the treasure, and move towards that person.

Here, it is evident that by using the information you can gather from your friends, you can increase the chances
of finding the treasure, and at the same time maximize the group’s reward. This is the basics of Particle Swarm
Optimization (PSO). The group is called the swarm, you are a particle, and the treasure is the global optimum
[CI2007].

3

http://pyswarms.readthedocs.io/en/latest/intro.html
https://pyswarms.readthedocs.io/en/latest/installation.html
https://pyswarms.readthedocs.io/en/latest/examples/usecases.html
https://pyswarms.readthedocs.io/en/latest/contributing.html
https://github.com/ljvmiranda921/pyswarms/issues
https://github.com/ljvmiranda921/pyswarms/labels/help%20wanted
https://github.com/ljvmiranda921/pyswarms/labels/first-timers-only

PySwarms Documentation, Release 1.0.2

1.1.2 Particle Swarm Optimization (PSO)

As with the treasure example, the idea of PSO is to emulate the social behaviour of birds and fishes by initializing
a set of candidate solutions to search for an optima. Particles are scattered around the search-space, and they move
around it to find the position of the optima. Each particle represents a candidate solution, and their movements are
affected in a two-fold manner: (1) their cognitive desire to search individually, (2) and the collective action of the
group or its neighbors. It is a fairly simple concept with profound applications.

One interesting characteristic of PSO is that it does not use the gradient of the function, thus, objective functions
need not to be differentiable. Moreover, the basic PSO is astonishingly simple. Adding variants to the original
implementation can help it adapt to more complicated problems.

The original PSO algorithm is attributed to Eberhart, Kennedy, and Shi [IJCNN1995] [ICEC2008]. Nowadays,
a lot of variations in topology, search-space characteristic, constraints, objectives, are being researched upon to
solve a variety of problems.

1.1.3 Why make PySwarms?

In one of my graduate courses during Masters, my professor asked us to implement PSO for training a neural
network. It was, in all honesty, my first experience of implementing an algorithm from concept to code. I found
the concept of PSO very endearing, primarily because it gives us an insight on the advantage of collaboration
given a social situation.

When I revisited my course project, I realized that PSO, given enough variations, can be used to solve a lot of
problems: from simple optimization, to robotics, and to job-shop scheduling. I then decided to build a research
toolkit that can be extended by the community (us!) and be used by anyone.

References

1.2 Features

1.2.1 Single-Objective Optimizers

These are standard optimization techniques for finding the optima of a single objective function.

Continuous

Single-objective optimization where the search-space is continuous. Perfect for optimizing various common func-
tions.

• pyswarms.single.global_best - classic global-best Particle Swarm Optimization algorithm with
a star-topology. Every particle compares itself with the best-performing particle in the swarm.

• pyswarms.single.local_best - classic local-best Particle Swarm Optimization algorithm with a
ring-topology. Every particle compares itself only with its nearest-neighbours as computed by a distance
metric.

• pyswarms.single.general_optimizer - alterable but still classic Particle Swarm Optimization
algorithm with a custom topology. Every topology in the pyswarms.backend module can be passed as
an argument.

Discrete

Single-objective optimization where the search-space is discrete. Useful for job-scheduling, traveling salesman,
or any other sequence-based problems.

4 Chapter 1. Launching pad

PySwarms Documentation, Release 1.0.2

• pyswarms.discrete.binary - classic binary Particle Swarm Optimization algorithm without muta-
tion. Uses a ring topology to choose its neighbours (but can be set to global).

1.2.2 Utilities

Benchmark Functions

These functions can be used as benchmarks for assessing the performance of the optimization algorithm.

• pyswarms.utils.functions.single_obj - single-objective test functions

Search

These search methods can be used to compare the relative performance of hyperparameter value combinations in
reducing a specified objective function.

• pyswarms.utils.search.grid_search - exhaustive search of optimal performance on selected
objective function over cartesian products of provided hyperparameter values

• pyswarms.utils.search.random_search - search for optimal performance on selected objec-
tive function over combinations of randomly selected hyperparameter values within specified bounds for
specified number of selection iterations

Plotters

A quick and easy to use tool for the visualization of optimizations. It allows you to easily create animations and
to visually check your optimization!

• pyswarms.utils.plotters

Environment

Deprecated since version 0.4.0: Use pyswarms.utils.plotters instead!

Various environments that allow you to analyze your swarm performance and make visualizations!

• pyswarms.utils.environments.plot_environment - an environment for plotting the cost
history and animating particles in a 2D or 3D space.

1.3 Installation

1.3.1 Stable release

To install PySwarms, run this command in your terminal:

$ pip install pyswarms

This is the preferred method to install PySwarms, as it will always install the most recent stable release.

If you don’t have pip installed, this Python installation guide can guide you through the process.

1.3. Installation 5

https://pip.pypa.io
http://docs.python-guide.org/en/latest/starting/installation/

PySwarms Documentation, Release 1.0.2

1.3.2 From sources

The sources for PySwarms can be downloaded from the Github repo.

You can either clone the public repository:

$ git clone git://github.com/ljvmiranda921/pyswarms

Or download the tarball:

$ curl -OL https://github.com/ljvmiranda921/pyswarms/tarball/master

Once you have a copy of the source, you can install it with:

$ python setup.py install

1.4 Credits

This project was inspired by the pyswarm module that performs PSO with constrained support. The package was
created with Cookiecutter and the audreyr/cookiecutter-pypackage project template.

1.4.1 Maintainers

• Lester James V. Miranda (@ljvmiranda921)

• Aaron Moser (@whzup)

• Siobhán K. Cronin (@SioKCronin)

1.4.2 Contributors

• Carl-K (@Carl-K)

• Andrew Jarcho (@jazcap53)

• Charalampos Papadimitriou (@CPapadim)

• Mamady Nabé (@mamadyonline)

• Erik (@slek120)

• Jay Speidell (@jayspeidell)

• Bradahoward (@bradahoward)

• Thomas (@ThomasCES)

1.5 History

1.5.1 0.1.0 (2017-07-12)

• First release on PyPI.

• NEW: Includes primary optimization techniques such as global-best PSO and local-best PSO - #1, #3

6 Chapter 1. Launching pad

https://github.com/ljvmiranda921/pyswarms
https://github.com/ljvmiranda921/pyswarms/tarball/master
https://github.com/tisimst/pyswarm
https://github.com/audreyr/cookiecutter
https://github.com/audreyr/cookiecutter-pypackage
https://github.com/ljvmiranda921
https://github.com/whzup
https://github.com/SioKCronin
https://github.com/Carl-K
https://github.com/jazcap53
https://github.com/CPapadim
https://github.com/mamadyonline
https://github.com/slek120
https://github.com/jayspeidell
https://github.com/bradahoward
https://github.com/ThomasCES
https://github.com/ljvmiranda921/pyswarms/issues/1
https://github.com/ljvmiranda921/pyswarmsissues/3

PySwarms Documentation, Release 1.0.2

0.1.1 (2017-07-25)

• FIX: Patch on LocalBestPSO implementation. It seems that it’s not returning the best value of the neighbors,
this fixes the problem .

• NEW: Test functions for single-objective problems - #6, #10, #14. Contributed by @Carl-K. Thank you!

0.1.2 (2017-08-02)

• NEW: Binary Particle Swarm Optimization - #7, #17

• FIX: Fix on Ackley function return error - #22

• IMPROVED: Documentation and unit tests - #16

0.1.4 (2017-08-03)

• FIX: Added a patch to fix pip installation

0.1.5 (2017-08-11)

• NEW: easy graphics environment. This new plotting environment makes it easier to plot the costs and
swarm movement in 2-d or 3-d planes - #30, #31

0.1.6 (2017-09-24)

• NEW: Native GridSearch and RandomSearch implementations for finding the best hyperparameters in con-
trolling swarm behaviour - #4, #20, #25. Contributed by @SioKCronin. Thanks a lot!

• NEW: Added tests for hyperparameter search techniques - #27, #28, #40. Contributed by @jazcap53.
Thank you so much!

• IMPROVED: Updated structure of Base classes for higher extensibility

0.1.7 (2017-09-25)

• FIX: Fixed patch on local_best.py and binary.py - #33, #34. Thanks for the awesome fix, @CPa-
padim!

• NEW: Git now ignores IPython notebook checkpoints

0.1.8 (2018-01-11)

• NEW: PySwarms is now published on the Journal of Open Source Software (JOSS)! You can check the
review here. In addition, you can also find our paper in this link. Thanks a lot to @kyleniemeyer and
@stsievert for the thoughtful reviews and comments.

0.1.9 (2018-04-20)

• NEW: You can now set the initial position wherever you want - #93

• FIX: Quick-fix for the Rosenbrock function - #98

• NEW: Tolerance can now be set to break during iteration - #100

Thanks for all the wonderful Pull Requests, @mamadyonline!

1.5. History 7

https://github.com/ljvmiranda921/pyswarms/issues/6
https://github.com/ljvmiranda921/pyswarms/pull/10
https://github.com/ljvmiranda921/pyswarms/pull/14
https://github.com/Carl-K
https://github.com/ljvmiranda921/pyswarms/issues/7
https://github.com/ljvmiranda921/pyswarms/issues/17
https://github.com/ljvmiranda921/pyswarms/issues/22
https://github.com/ljvmiranda921/pyswarms/issues/16
https://github.com/ljvmiranda921/pyswarms/issues/30
https://github.com/ljvmiranda921/pyswarms/pull/31
https://github.com/ljvmiranda921/pyswarms/issues/4
https://github.com/ljvmiranda921/pyswarms/pull/20
https://github.com/ljvmiranda921/pyswarms/pull/25
https://github.com/SioKCronin
https://github.com/ljvmiranda921/pyswarms/issues/27
https://github.com/ljvmiranda921/pyswarms/pull/28
https://github.com/ljvmiranda921/pyswarms/pull/40
https://github.com/jazcap53
https://github.com/ljvmiranda921/pyswarms/issues/33
https://github.com/ljvmiranda921/pyswarms/pull/34
https://github.com/CPapadim
https://github.com/CPapadim
https://github.com/openjournals/joss-reviews/issues/433
http://joss.theoj.org/papers/235299884212b9223bce909631e3938b
https://github.com/kyleniemeyer
https://github.com/stsievert
https://github.com/ljvmiranda921/pyswarms/pull/93
https://github.com/ljvmiranda921/pyswarms/pull/98
https://github.com/ljvmiranda921/pyswarms/pull/100
https://github.com/mamadyonline

PySwarms Documentation, Release 1.0.2

1.5.2 0.2.0 (2018-06-11)

• NEW: New PySwarms backend. You can now build native swarm implementations using this module! -
#115, #116, #117

• DEPRECATED: Drop Python 2.7 version support. This package now supports Python 3.4 and up - #113

• IMPROVED: All tests were ported into pytest - #114

0.2.1 (2018-06-27)

• FIX: Fix sigmoid function in BinaryPSO - #145. Thanks a lot @ThomasCES!

1.5.3 0.3.0 (2018-08-10)

• NEW: New topologies: Pyramid, Random, and Von Neumann. More ways for your particles to interact! -
#176, #177, #155, #142. Thanks a lot @whzup!

• NEW: New GeneralOptimizer algorithm that allows you to switch-out topologies for your optimization
needs - #151. Thanks a lot @whzup!

• NEW: All topologies now have a static attribute. Neigbors can now be set initially or computed dynamically
- #164. Thanks a lot @whzup!

• NEW: New single-objective functions - #168. Awesome work, @jayspeidell!

• NEW: New tutorial on Inverse Kinematics using Particle Swarm Optimization - #141. Thanks a lot
@whzup!

• NEW: New plotters module for visualization. The environment module is now deprecated - #135

• IMPROVED: Keyword arguments can now be passed in the optimize() method for your custom ob-
jective functions - #144. Great job, @bradahoward

0.3.1 (2018-08-13)

• NEW: New collaboration tool using Vagrantfiles - #193. Thanks a lot @jdbohrman!

• NEW: Add configuration file for pyup.io - #210

• FIX: Fix incomplete documentation in ReadTheDocs - #208

• IMPROVED: Update dependencies via pyup - #204

1.5.4 0.4.0 (2019-01-29)

• NEW: The console output is now generated by the Reporter module - #227

• NEW: A @cost decorator which automatically scales to the whole swarm - #226

• FIX: A bug in the topologies where the best position in some topologies was not calculated using the nearest
neighbours - #253

• FIX: Swarm init positions - #249 Thanks @dfhljf!

• IMPROVED: Better naming for the benchmark functions - #222 Thanks @nik1082!

• IMPROVED: Error handling in the Optimizers - #232

• IMPROVED: New management method for dependencies - #263

• DEPRECATED: The environments module is now deprecated - #217

8 Chapter 1. Launching pad

https://github.com/ljvmiranda921/pyswarms/pull/115
https://github.com/ljvmiranda921/pyswarms/pull/116
https://github.com/ljvmiranda921/pyswarms/pull/117
https://github.com/ljvmiranda921/pyswarms/pull/113
https://github.com/ljvmiranda921/pyswarms/pull/114
https://github.com/ljvmiranda921/pyswarms/pull/145
https://github.com/ThomasCES
https://github.com/ljvmiranda921/pyswarms/pull/176
https://github.com/ljvmiranda921/pyswarms/pull/177
https://github.com/ljvmiranda921/pyswarms/pull/155
https://github.com/ljvmiranda921/pyswarms/pull/142
https://github.com/whzup
https://github.com/ljvmiranda921/pyswarms/pull/151
https://github.com/whzup
https://github.com/ljvmiranda921/pyswarms/pull/164
https://github.com/whzup
https://github.com/ljvmiranda921/pyswarms/pull/168
https://github.com/jayspeidell
https://github.com/ljvmiranda921/pyswarms/pull/141
https://github.com/whzup
https://github.com/ljvmiranda921/pyswarms/pull/135
https://github.com/ljvmiranda921/pyswarms/pull/144
https://github.com/bradahoward
https://github.com/ljvmiranda921/pyswarms/pull/193
https://github.com/jdbohrman
https://github.com/ljvmiranda921/pyswarms/pull/210
https://github.com/ljvmiranda921/pyswarms/pull/208
https://github.com/ljvmiranda921/pyswarms/pull/204
https://github.com/ljvmiranda921/pyswarms/pull/227
https://github.com/ljvmiranda921/pyswarms/pull/226
https://github.com/ljvmiranda921/pyswarms/pull/253
https://github.com/ljvmiranda921/pyswarms/pull/249
https://github.com/dfhljf
https://github.com/ljvmiranda921/pyswarms/pull/222
https://github.com/nik1082
https://github.com/ljvmiranda921/pyswarms/pull/232
https://github.com/ljvmiranda921/pyswarms/pull/263
https://github.com/ljvmiranda921/pyswarms/pull/217

PySwarms Documentation, Release 1.0.2

1.5.5 1.0.0 (2019-02-08)

This is the first major release of PySwarms. Starting today, we will be adhering to a better semantic versioning
guidelines. We will be updating the project wikis shortly after. The maintainers believe that PySwarms is mature
enough to merit a version 1, this would also help us release more often (mostly minor releases) and create patch
releases as soon as possible.

Also, we will be maintaining a quarterly release cycle, where the next minor release (v.1.0.0) will be on June.
All enhancements and new features will be staged on the development branch, then will be merged back to the
master branch at the end of the cycle. However, bug fixes and documentation errors will merit a patch release,
and will be merged to master immediately.

• NEW: Boundary and velocity handlers to resolve stuck particles - #238 . All thanks for our maintainer,
@whzup !

• FIX: Duplication function calls during optimization, hopefully your long-running objective functions won’t
take doubly long. - #266. Thank you @danielcorreia96 !

1.0.1 (2019-02-14)

• FIX: Handlers memory management so that it works all the time - #286 . Thanks for this @whzup !

• FIX: Re-introduce fix for multiple optimization function calls - #290 . Thank you once more @danielcor-
reia96 !

1.0.2 (2019-02-17)

• FIX: BinaryPSO should return final best position instead of final swarm - #293 . Thank you once more
@danielcorreia96 !

1.6 Tutorials

Below are some examples describing how the PySwarms API works. If you wish to check the actual Jupyter
Notebooks, please go to this link

1.6.1 Basic Optimization

In this example, we’ll be performing a simple optimization of single-objective functions using the global-best opti-
mizer in pyswarms.single.GBestPSO and the local-best optimizer in pyswarms.single.LBestPSO.
This aims to demonstrate the basic capabilities of the library when applied to benchmark problems.

import sys
Change directory to access the pyswarms module
sys.path.append('../')

print('Running on Python version: {}'.format(sys.version))

Running on Python version: 3.6.7 (default, Oct 22 2018, 11:32:17)
[GCC 8.2.0]

Import modules
import numpy as np

Import PySwarms
import pyswarms as ps
from pyswarms.utils.functions import single_obj as fx

(continues on next page)

1.6. Tutorials 9

https://semver.org/
https://semver.org/
https://github.com/ljvmiranda921/pyswarms/pull/238
https://github.com/whzup
https://github.com/ljvmiranda921/pyswarms/pull/266
https://github.com/danielcorreia96
https://github.com/ljvmiranda921/pyswarms/pull/286
https://github.com/whzup
https://github.com/ljvmiranda921/pyswarms/pull/290
https://github.com/danielcorreia96
https://github.com/danielcorreia96
https://github.com/ljvmiranda921/pyswarms/pull/293
https://github.com/danielcorreia96
https://github.com/ljvmiranda921/pyswarms/tree/master/examples

PySwarms Documentation, Release 1.0.2

(continued from previous page)

Some more magic so that the notebook will reload external python modules;
see http://stackoverflow.com/questions/1907993/autoreload-of-modules-in-ipython
%load_ext autoreload
%autoreload 2

Optimizing a function

First, let’s start by optimizing the sphere function. Recall that the minima of this function can be located at
f(0,0..,0) with a value of 0. In case you don’t remember the characteristics of a given function, simply call
help(<function>).

For now let’s just set some arbitrary parameters in our optimizers. There are, at minimum, three steps to perform
optimization:

1. Set the hyperparameters to configure the swarm as a dict.

2. Create an instance of the optimizer by passing the dictionary along with the necessary arguments.

3. Call the optimize() method and have it store the optimal cost and position in a variable.

The optimize() method returns a tuple of values, one of which includes the optimal cost and position after
optimization. You can store it in a single variable and just index the values, or unpack it using several variables at
once.

%%time
Set-up hyperparameters
options = {'c1': 0.5, 'c2': 0.3, 'w':0.9}

Call instance of PSO
optimizer = ps.single.GlobalBestPSO(n_particles=10, dimensions=2, options=options)

Perform optimization
cost, pos = optimizer.optimize(fx.sphere, iters=1000)

2019-01-30 04:23:31,846 - pyswarms.single.global_best - INFO - Optimize for 1000
→˓iters with {'c1': 0.5, 'c2': 0.3, 'w': 0.9}
pyswarms.single.global_best: 100%||1000/1000, best_cost=5.34e-43
2019-01-30 04:23:46,631 - pyswarms.single.global_best - INFO - Optimization
→˓finished | best cost: 5.3409429804817095e-43, best pos: [-4.84855366e-22 -5.
→˓46817677e-22]

CPU times: user 5.63 s, sys: 916 ms, total: 6.55 s
Wall time: 14.8 s

We can see that the optimizer was able to find a good minima as shown above. You can control the verbosity
of the output using the verbose argument, and the number of steps to be printed out using the print_step
argument.

Now, let’s try this one using local-best PSO:

%%time
Set-up hyperparameters
options = {'c1': 0.5, 'c2': 0.3, 'w':0.9, 'k': 2, 'p': 2}

Call instance of PSO
optimizer = ps.single.LocalBestPSO(n_particles=10, dimensions=2, options=options)

Perform optimization
cost, pos = optimizer.optimize(fx.sphere, iters=1000)

10 Chapter 1. Launching pad

PySwarms Documentation, Release 1.0.2

2019-01-30 04:23:46,672 - pyswarms.single.local_best - INFO - Optimize for 1000
→˓iters with {'c1': 0.5, 'c2': 0.3, 'w': 0.9, 'k': 2, 'p': 2}
pyswarms.single.local_best: 100%||1000/1000, best_cost=1.19e-48
2019-01-30 04:24:02,254 - pyswarms.single.local_best - INFO - Optimization
→˓finished | best cost: 1.1858559943008184e-48, best pos: [5.47013119e-24 7.
→˓95177208e-25]

CPU times: user 6.63 s, sys: 1.04 s, total: 7.68 s
Wall time: 15.6 s

Optimizing a function with bounds

Another thing that we can do is to set some bounds into our solution, so as to contain our candidate solutions
within a specific range. We can do this simply by passing a bounds parameter, of type tuple, when creating
an instance of our swarm. Let’s try this using the global-best PSO with the Rastrigin function (rastrigin in
pyswarms.utils.functions.single_obj).

Recall that the Rastrigin function is bounded within [-5.12, 5.12]. If we pass an unbounded swarm into this
function, then a ValueError might be raised. So what we’ll do is to create a bound within the specified range.
There are some things to remember when specifying a bound:

• A bound should be of type tuple with length 2.

• It should contain two numpy.ndarrays so that we have a (min_bound, max_bound)

• Obviously, all values in the max_bound should always be greater than the min_bound. Their shapes
should match the dimensions of the swarm.

What we’ll do now is to create a 10-particle, 2-dimensional swarm. This means that we have to set our maximum
and minimum boundaries with the shape of 2. In case we want to initialize an n-dimensional swarm, we then have
to set our bounds with the same shape n. A fast workaround for this would be to use the numpy.ones function
multiplied by a constant.

Create bounds
max_bound = 5.12 * np.ones(2)
min_bound = - max_bound
bounds = (min_bound, max_bound)

%%time
Initialize swarm
options = {'c1': 0.5, 'c2': 0.3, 'w':0.9}

Call instance of PSO with bounds argument
optimizer = ps.single.GlobalBestPSO(n_particles=10, dimensions=2, options=options,
→˓bounds=bounds)

Perform optimization
cost, pos = optimizer.optimize(fx.rastrigin, iters=1000)

2019-01-30 04:24:02,463 - pyswarms.single.global_best - INFO - Optimize for 1000
→˓iters with {'c1': 0.5, 'c2': 0.3, 'w': 0.9}
pyswarms.single.global_best: 100%||1000/1000, best_cost=0
2019-01-30 04:24:17,995 - pyswarms.single.global_best - INFO - Optimization
→˓finished | best cost: 0.0, best pos: [1.99965504e-09 9.50602717e-10]

CPU times: user 6.74 s, sys: 1.01 s, total: 7.75 s
Wall time: 15.5 s

1.6. Tutorials 11

PySwarms Documentation, Release 1.0.2

Basic Optimization with Arguments

Here, we will run a basic optimization using an objective function that needs parameterization. We will use the
single.GBestPSO and a version of the rosenbrock function to demonstrate

import sys
change directory to access pyswarms
sys.path.append('../')

print("Running Python {}".format(sys.version))

Running Python 3.6.7 (default, Oct 22 2018, 11:32:17)
[GCC 8.2.0]

import modules
import numpy as np

create a parameterized version of the classic Rosenbrock unconstrained
→˓optimzation function
def rosenbrock_with_args(x, a, b, c=0):

f = (a - x[:, 0]) ** 2 + b * (x[:, 1] - x[:, 0] ** 2) ** 2 + c
return f

Using Arguments

Arguments can either be passed in using a tuple or a dictionary, using the kwargs={} paradigm. First lets
optimize the Rosenbrock function using keyword arguments. Note in the definition of the Rosenbrock function
above, there were two arguments that need to be passed other than the design variables, and one optional keyword
argument, a, b, and c, respectively

from pyswarms.single.global_best import GlobalBestPSO

instantiate the optimizer
x_max = 10 * np.ones(2)
x_min = -1 * x_max
bounds = (x_min, x_max)
options = {'c1': 0.5, 'c2': 0.3, 'w': 0.9}
optimizer = GlobalBestPSO(n_particles=10, dimensions=2, options=options,
→˓bounds=bounds)

now run the optimization, pass a=1 and b=100 as a tuple assigned to args

cost, pos = optimizer.optimize(rosenbrock_with_args, 1000, a=1, b=100, c=0)

2019-01-30 04:24:18,385 - pyswarms.single.global_best - INFO - Optimize for 1000
→˓iters with {'c1': 0.5, 'c2': 0.3, 'w': 0.9}
pyswarms.single.global_best: 100%||1000/1000, best_cost=1.65e-18
2019-01-30 04:24:33,873 - pyswarms.single.global_best - INFO - Optimization
→˓finished | best cost: 1.6536536065757395e-18, best pos: [1. 1.]

It is also possible to pass a dictionary of key word arguments by using ** decorator when passing the dict

kwargs={"a": 1.0, "b": 100.0, 'c':0}
cost, pos = optimizer.optimize(rosenbrock_with_args, 1000, **kwargs)

2019-01-30 04:24:33,904 - pyswarms.single.global_best - INFO - Optimize for 1000
→˓iters with {'c1': 0.5, 'c2': 0.3, 'w': 0.9}
pyswarms.single.global_best: 100%||1000/1000, best_cost=9.13e-19

(continues on next page)

12 Chapter 1. Launching pad

PySwarms Documentation, Release 1.0.2

(continued from previous page)

2019-01-30 04:24:49,482 - pyswarms.single.global_best - INFO - Optimization
→˓finished | best cost: 9.132114249459913e-19, best pos: [1. 1.]

Any key word arguments in the objective function can be left out as they will be passed the default as defined in
the prototype. Note here, c is not passed into the function.

cost, pos = optimizer.optimize(rosenbrock_with_args, 1000, a=1, b=100)

2019-01-30 04:24:49,518 - pyswarms.single.global_best - INFO - Optimize for 1000
→˓iters with {'c1': 0.5, 'c2': 0.3, 'w': 0.9}
pyswarms.single.global_best: 100%||1000/1000, best_cost=9.13e-19
2019-01-30 04:25:05,071 - pyswarms.single.global_best - INFO - Optimization
→˓finished | best cost: 9.125748012380431e-19, best pos: [1. 1.]

1.6.2 Training a Neural Network

In this example, we’ll be training a neural network using particle swarm optimization. For this we’ll be using the
standard global-best PSO pyswarms.single.GBestPSO for optimizing the network’s weights and biases.
This aims to demonstrate how the API is capable of handling custom-defined functions.

For this example, we’ll try to classify the three iris species in the Iris Dataset.

Import modules
import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import load_iris

Import PySwarms
import pyswarms as ps

Some more magic so that the notebook will reload external python modules;
see http://stackoverflow.com/questions/1907993/autoreload-of-modules-in-ipython
%load_ext autoreload
%autoreload 2

First, we’ll load the dataset from scikit-learn. The Iris Dataset contains 3 classes for each of the iris species
(iris setosa, iris virginica, and iris versicolor). It has 50 samples per class with 150 samples in total, making it a
very balanced dataset. Each sample is characterized by four features (or dimensions): sepal length, sepal width,
petal length, petal width.

Load the iris dataset
data = load_iris()

Store the features as X and the labels as y
X = data.data
y = data.target

Constructing a custom objective function

Recall that neural networks can simply be seen as a mapping function from one space to another. For now, we’ll
build a simple neural network with the following characteristics:

• Input layer size: 4

• Hidden layer size: 20 (activation: tanh(𝑥))

• Output layer size: 3 (activation: 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑥))

1.6. Tutorials 13

PySwarms Documentation, Release 1.0.2

Things we’ll do:

1. Create a forward_prop method that will do forward propagation for one particle.

2. Create an overhead objective function f() that will compute forward_prop() for the whole swarm.

What we’ll be doing then is to create a swarm with a number of dimensions equal to the weights and biases. We
will unroll these parameters into an n-dimensional array, and have each particle take on different values. Thus,
each particle represents a candidate neural network with its own weights and bias. When feeding back to the
network, we will reconstruct the learned weights and biases.

When rolling-back the parameters into weights and biases, it is useful to recall the shape and bias matrices:

• Shape of input-to-hidden weight matrix: (4, 20)

• Shape of input-to-hidden bias array: (20,)

• Shape of hidden-to-output weight matrix: (20, 3)

• Shape of hidden-to-output bias array: (3,)

By unrolling them together, we have (4 * 20) + (20 * 3) + 20 + 3 = 163 parameters, or 163 dimensions for each
particle in the swarm.

The negative log-likelihood will be used to compute for the error between the ground-truth values and the predic-
tions. Also, because PSO doesn’t rely on the gradients, we’ll not be performing backpropagation (this may be a
good thing or bad thing under some circumstances).

Now, let’s write the forward propagation procedure as our objective function. Let 𝑋 be the input, 𝑧𝑙 the pre-
activation at layer 𝑙, and 𝑎𝑙 the activation for layer 𝑙:

Forward propagation
def forward_prop(params):

"""Forward propagation as objective function

This computes for the forward propagation of the neural network, as
well as the loss. It receives a set of parameters that must be
rolled-back into the corresponding weights and biases.

Inputs

params: np.ndarray

The dimensions should include an unrolled version of the
weights and biases.

Returns

float

The computed negative log-likelihood loss given the parameters
"""
Neural network architecture
n_inputs = 4
n_hidden = 20
n_classes = 3

Roll-back the weights and biases
W1 = params[0:80].reshape((n_inputs,n_hidden))
b1 = params[80:100].reshape((n_hidden,))
W2 = params[100:160].reshape((n_hidden,n_classes))
b2 = params[160:163].reshape((n_classes,))

Perform forward propagation
z1 = X.dot(W1) + b1 # Pre-activation in Layer 1
a1 = np.tanh(z1) # Activation in Layer 1
z2 = a1.dot(W2) + b2 # Pre-activation in Layer 2
logits = z2 # Logits for Layer 2

(continues on next page)

14 Chapter 1. Launching pad

PySwarms Documentation, Release 1.0.2

(continued from previous page)

Compute for the softmax of the logits
exp_scores = np.exp(logits)
probs = exp_scores / np.sum(exp_scores, axis=1, keepdims=True)

Compute for the negative log likelihood
N = 150 # Number of samples
corect_logprobs = -np.log(probs[range(N), y])
loss = np.sum(corect_logprobs) / N

return loss

Now that we have a method to do forward propagation for one particle (or for one set of dimensions), we can then
create a higher-level method to compute forward_prop() to the whole swarm:

def f(x):
"""Higher-level method to do forward_prop in the
whole swarm.

Inputs

x: numpy.ndarray of shape (n_particles, dimensions)

The swarm that will perform the search

Returns

numpy.ndarray of shape (n_particles,)

The computed loss for each particle
"""
n_particles = x.shape[0]
j = [forward_prop(x[i]) for i in range(n_particles)]
return np.array(j)

Performing PSO on the custom-function

Now that everything has been set-up, we just call our global-best PSO and run the optimizer as usual. For now,
we’ll just set the PSO parameters arbitrarily.

Initialize swarm
options = {'c1': 0.5, 'c2': 0.3, 'w':0.9}

Call instance of PSO
dimensions = (4 * 20) + (20 * 3) + 20 + 3
optimizer = ps.single.GlobalBestPSO(n_particles=100, dimensions=dimensions,
→˓options=options)

Perform optimization
cost, pos = optimizer.optimize(f, print_step=100, iters=1000, verbose=3)

Iteration 1/1000, cost: 1.09858937026
Iteration 101/1000, cost: 0.0516382653768
Iteration 201/1000, cost: 0.0416398234107
Iteration 301/1000, cost: 0.0399519086999
Iteration 401/1000, cost: 0.0396579575634
Iteration 501/1000, cost: 0.0394155032472
Iteration 601/1000, cost: 0.0388702854787
Iteration 701/1000, cost: 0.0386106261126
Iteration 801/1000, cost: 0.0384067695633
Iteration 901/1000, cost: 0.0370548470526

(continues on next page)

1.6. Tutorials 15

PySwarms Documentation, Release 1.0.2

(continued from previous page)

================================
Optimization finished!
Final cost: 0.0362
Best value: 0.170569 -4.586860 -0.726267 -3.602894 0.085438 -3.167099 ...

Checking the accuracy

We can then check the accuracy by performing forward propagation once again to create a set of predictions. Then
it’s only a simple matter of matching which one’s correct or not. For the logits, we take the argmax. Recall
that the softmax function returns probabilities where the whole vector sums to 1. We just take the one with the
highest probability then treat it as the network’s prediction.

Moreover, we let the best position vector found by the swarm be the weight and bias parameters of the network.

def predict(X, pos):
"""
Use the trained weights to perform class predictions.

Inputs

X: numpy.ndarray

Input Iris dataset
pos: numpy.ndarray

Position matrix found by the swarm. Will be rolled
into weights and biases.

"""
Neural network architecture
n_inputs = 4
n_hidden = 20
n_classes = 3

Roll-back the weights and biases
W1 = pos[0:80].reshape((n_inputs,n_hidden))
b1 = pos[80:100].reshape((n_hidden,))
W2 = pos[100:160].reshape((n_hidden,n_classes))
b2 = pos[160:163].reshape((n_classes,))

Perform forward propagation
z1 = X.dot(W1) + b1 # Pre-activation in Layer 1
a1 = np.tanh(z1) # Activation in Layer 1
z2 = a1.dot(W2) + b2 # Pre-activation in Layer 2
logits = z2 # Logits for Layer 2

y_pred = np.argmax(logits, axis=1)
return y_pred

And from this we can just compute for the accuracy. We perform predictions, compare an equivalence to the
ground-truth value y, and get the mean.

(predict(X, pos) == y).mean()

0.98666666666666669

1.6.3 Writing your own optimization loop

In this example, we will use the pyswarms.backend module to write our own optimization loop. We will try
to recreate the Global best PSO using the native backend in PySwarms. Hopefully, this short tutorial can give you

16 Chapter 1. Launching pad

PySwarms Documentation, Release 1.0.2

an idea on how to use this for your own custom swarm implementation. The idea is simple, again, let’s refer to
this diagram:

Some things to note:

• Initialize a Swarm class and update its attributes for every iteration.

• Initialize a Topology class (in this case, we’ll use a Star topology), and use its methods to operate on
the Swarm.

• We can also use some additional methods in pyswarms.backend depending on our needs.

Thus, for each iteration: 1. We take an attribute from the Swarm class. 2. Operate on it according to our custom
algorithm with the help of the Topology class; and 3. Update the Swarm class with the new attributes.

Change directory to access the pyswarms module
sys.path.append('../')

print('Running on Python version: {}'.format(sys.version))

Running on Python version: 3.6.7 (default, Oct 22 2018, 11:32:17)
[GCC 8.2.0]

Import modules
import numpy as np

Import sphere function as objective function
from pyswarms.utils.functions.single_obj import sphere as f

Import backend modules
import pyswarms.backend as P
from pyswarms.backend.topology import Star

Some more magic so that the notebook will reload external python modules;

(continues on next page)

1.6. Tutorials 17

PySwarms Documentation, Release 1.0.2

(continued from previous page)

see http://stackoverflow.com/questions/1907993/autoreload-of-modules-in-ipython
%load_ext autoreload
%autoreload 2

Native global-best PSO implementation

Now, the global best PSO pseudocode looks like the following (adapted from A. Engelbrecht, “Computational
Intelligence: An Introduction, 2002):

Python-version of gbest algorithm from Engelbrecht's book
for i in range(iterations):

for particle in swarm:
Part 1: If current position is less than the personal best,
if f(current_position[particle]) < f(personal_best[particle]):

Update personal best
personal_best[particle] = current_position[particle]

Part 2: If personal best is less than global best,
if f(personal_best[particle]) < f(global_best):

Update global best
global_best = personal_best[particle]

Part 3: Update velocity and position matrices
update_velocity()
update_position()

As you can see, the standard PSO has a three-part scheme: update the personal best, update the global best, and
update the velocity and position matrices. We’ll follow this three part scheme in our native implementation using
the PySwarms backend

Let’s make a 2-dimensional swarm with 50 particles that will optimize the sphere function. First, let’s initialize
the important attributes in our algorithm

my_topology = Star() # The Topology Class
my_options = {'c1': 0.6, 'c2': 0.3, 'w': 0.4} # arbitrarily set
my_swarm = P.create_swarm(n_particles=50, dimensions=2, options=my_options) # The
→˓Swarm Class

print('The following are the attributes of our swarm: {}'.format(my_swarm.__dict__.
→˓keys()))

The following are the attributes of our swarm: dict_keys(['position', 'velocity',
→˓'n_particles', 'dimensions', 'options', 'pbest_pos', 'best_pos', 'pbest_cost',
→˓'best_cost', 'current_cost'])

Now, let’s write our optimization loop!

iterations = 100 # Set 100 iterations
for i in range(iterations):

Part 1: Update personal best
my_swarm.current_cost = f(my_swarm.position) # Compute current cost
my_swarm.pbest_cost = f(my_swarm.pbest_pos) # Compute personal best pos
my_swarm.pbest_pos, my_swarm.pbest_cost = P.compute_pbest(my_swarm) # Update

→˓and store

Part 2: Update global best
Note that gbest computation is dependent on your topology
if np.min(my_swarm.pbest_cost) < my_swarm.best_cost:

my_swarm.best_pos, my_swarm.best_cost = my_topology.compute_gbest(my_swarm)

Let's print our output

(continues on next page)

18 Chapter 1. Launching pad

https://www.wiley.com/en-us/Computational+Intelligence%3A+An+Introduction%2C+2nd+Edition-p-9780470035610
https://www.wiley.com/en-us/Computational+Intelligence%3A+An+Introduction%2C+2nd+Edition-p-9780470035610

PySwarms Documentation, Release 1.0.2

(continued from previous page)

if i%20==0:
print('Iteration: {} | my_swarm.best_cost: {:.4f}'.format(i+1, my_swarm.

→˓best_cost))

Part 3: Update position and velocity matrices
Note that position and velocity updates are dependent on your topology
my_swarm.velocity = my_topology.compute_velocity(my_swarm)
my_swarm.position = my_topology.compute_position(my_swarm)

print('The best cost found by our swarm is: {:.4f}'.format(my_swarm.best_cost))
print('The best position found by our swarm is: {}'.format(my_swarm.best_pos))

Iteration: 1 | my_swarm.best_cost: 0.0020
Iteration: 21 | my_swarm.best_cost: 0.0000
Iteration: 41 | my_swarm.best_cost: 0.0000
Iteration: 61 | my_swarm.best_cost: 0.0000
Iteration: 81 | my_swarm.best_cost: 0.0000
The best cost found by our swarm is: 0.0000
The best position found by our swarm is: [1.26773865e-17 -1.24781239e-18]

Of course, we can just use the GlobalBestPSO implementation in PySwarms (it has boundary support, toler-
ance, initial positions, etc.):

from pyswarms.single import GlobalBestPSO

optimizer = GlobalBestPSO(n_particles=50, dimensions=2, options=my_options) #
→˓Reuse our previous options
optimizer.optimize(f, iters=100)

2019-01-30 23:50:06,728 - pyswarms.single.global_best - INFO - Optimize for 100
→˓iters with {'c1': 0.6, 'c2': 0.3, 'w': 0.4}
pyswarms.single.global_best: 100%||100/100, best_cost=0.00293
2019-01-30 23:50:08,269 - pyswarms.single.global_best - INFO - Optimization
→˓finished | best cost: 0.0029270203924585485, best pos: [0.0497835 0.02118073]

(0.0029270203924585485, array([0.0497835 , 0.02118073]))

1.6.4 Visualization

PySwarms implements tools for visualizing the behavior of your swarm. These are built on top of matplotlib,
thus rendering charts that are easy to use and highly-customizable. However, it must be noted that in order to
use the animation capability in PySwarms (and in matplotlib for that matter), at least one writer tool must be
installed. Some available tools include: * ffmpeg * ImageMagick * MovieWriter (base)

In the following demonstration, the ffmpeg tool is used. For Linux and Windows users, it can be installed via:

$ conda install -c conda-forge ffmpeg

In this example, we will demonstrate three plotting methods available on PySwarms: - plot_cost_history:
for plotting the cost history of a swarm given a matrix - plot_contour: for plotting swarm trajectories of
a 2D-swarm in two-dimensional space - plot_surface: for plotting swarm trajectories of a 2D-swarm in
three-dimensional space

Import modules
import matplotlib.pyplot as plt
import numpy as np
from matplotlib import animation, rc
from IPython.display import HTML

(continues on next page)

1.6. Tutorials 19

PySwarms Documentation, Release 1.0.2

(continued from previous page)

Import PySwarms
import pyswarms as ps
from pyswarms.utils.functions import single_obj as fx
from pyswarms.utils.plotters import (plot_cost_history, plot_contour, plot_surface)

Some more magic so that the notebook will reload external python modules;
see http://stackoverflow.com/questions/1907993/autoreload-of-modules-in-ipython
%load_ext autoreload
%autoreload 2

The first step is to create an optimizer. Here, we’re going to use Global-best PSO to find the minima of a sphere
function. As usual, we simply create an instance of its class pyswarms.single.GlobalBestPSO by passing
the required parameters that we will use. Then, we’ll call the optimize() method for 100 iterations.

options = {'c1':0.5, 'c2':0.3, 'w':0.9}
optimizer = ps.single.GlobalBestPSO(n_particles=50, dimensions=2, options=options)
cost, pos = optimizer.optimize(fx.sphere, iters=100)

Plotting the cost history

To plot the cost history, we simply obtain the cost_history from the optimizer class and pass it to the
cost_history function. Furthermore, this method also accepts a keyword argument **kwargs similar to
matplotlib. This enables us to further customize various artists and elements in the plot. In addition, we can
obtain the following histories from the same class:

• mean_neighbor_history: average local best history of all neighbors throughout optimization

• mean_pbest_history: average personal best of the particles throughout optimization

plot_cost_history(cost_history=optimizer.cost_history)
plt.show()

20 Chapter 1. Launching pad

PySwarms Documentation, Release 1.0.2

Animating swarms

The plotters module offers two methods to perform animation, plot_contour() and
plot_surface(). As its name suggests, these methods plot the particles in a 2-D or 3-D space.

Each animation method returns a matplotlib.animation.Animation class that still needs to be animated
by a Writer class (thus necessitating the installation of a writer module). For the proceeding examples, we will
convert the animations into an HTML5 video. In such case, we need to invoke some extra methods to do just that.

equivalent to rcParams['animation.html'] = 'html5'
See http://louistiao.me/posts/notebooks/save-matplotlib-animations-as-gifs/
rc('animation', html='html5')

Lastly, it would be nice to add meshes in our swarm to plot the sphere function. This enables us to visually
recognize where the particles are with respect to our objective function. We can accomplish that using the Mesher
class.

from pyswarms.utils.plotters.formatters import Mesher

Initialize mesher with sphere function
m = Mesher(func=fx.sphere)

There are different formatters available in the pyswarms.utils.plotters.formatters module to cus-
tomize your plots and visualizations. Aside from Mesher, there is a Designer class for customizing font sizes,
figure sizes, etc. and an Animator class to set delays and repeats during animation.

1.6. Tutorials 21

PySwarms Documentation, Release 1.0.2

Plotting in 2-D space

We can obtain the swarm’s position history using the pos_history attribute from the optimizer instance. To
plot a 2D-contour, simply pass this together with the Mesher to the plot_contour() function. In addition,
we can also mark the global minima of the sphere function, (0,0), to visualize the swarm’s “target”.

Make animation
animation = plot_contour(pos_history=optimizer.pos_history,

mesher=m,
mark=(0,0))

Enables us to view it in a Jupyter notebook
HTML(animation.to_html5_video())

Plotting in 3-D space

To plot in 3D space, we need a position-fitness matrix with shape (iterations, n_particles, 3). The
first two columns indicate the x-y position of the particles, while the third column is the fitness of that given
position. You need to set this up on your own, but we have provided a helper function to compute this automatically

Obtain a position-fitness matrix using the Mesher.compute_history_3d()
method. It requires a cost history obtainable from the optimizer class
pos_history_3d = m.compute_history_3d(optimizer.pos_history)

Make a designer and set the x,y,z limits to (-1,1), (-1,1) and (-0.1,1)
→˓respectively
from pyswarms.utils.plotters.formatters import Designer
d = Designer(limits=[(-1,1), (-1,1), (-0.1,1)], label=['x-axis', 'y-axis', 'z-axis
→˓'])

Make animation
animation3d = plot_surface(pos_history=pos_history_3d, # Use the cost_history we
→˓computed

mesher=m, designer=d, # Customizations
mark=(0,0,0)) # Mark minima

Enables us to view it in a Jupyter notebook
HTML(animation3d.to_html5_video())

1.7 Use-cases

Below are some examples on how to use PSO in different applications. If you wish to check the actual Jupyter
Notebooks, please go to this link

1.7.1 Feature Subset Selection

In this example, we’ll be using the optimizer pyswarms.discrete.BinaryPSO to perform feature subset
selection to improve classifier performance. But before we jump right on to the coding, let’s first explain some
relevant concepts:

22 Chapter 1. Launching pad

https://github.com/ljvmiranda921/pyswarms/tree/master/examples

PySwarms Documentation, Release 1.0.2

A short primer on feature selection

The idea for feature subset selection is to be able to find the best features that are suitable to the classification task.
We must understand that not all features are created equal, and some may be more relevant than others. Thus, if
we’re given an array of features, how can we know the most optimal subset? (yup, this is a rhetorical question!)

For a Binary PSO, the position of the particles are expressed in two terms: 1 or 0 (or on and off). If we have a
particle 𝑥 on 𝑑-dimensions, then its position can be defined as:

𝑥 = [𝑥1, 𝑥2, 𝑥3, . . . , 𝑥𝑑] where 𝑥𝑖 ∈ 0, 1

In this case, the position of the particle for each dimension can be seen as a simple matter of on and off.

Feature selection and the objective function

Now, suppose that we’re given a dataset with 𝑑 features. What we’ll do is that we’re going to assign each feature
as a dimension of a particle. Hence, once we’ve implemented Binary PSO and obtained the best position, we can
then interpret the binary array (as seen in the equation above) simply as turning a feature on and off.

As an example, suppose we have a dataset with 5 features, and the final best position of the PSO is:

>>> optimizer.best_pos
np.array([0, 1, 1, 1, 0])
>>> optimizer.best_cost
0.00

Then this means that the second, third, and fourth (or first, second, and third in zero-index) that are turned on are
the selected features for the dataset. We can then train our classifier using only these features while dropping the
others. How do we then define our objective function? (Yes, another rhetorical question!). We can design our
own, but for now I’ll be taking an equation from the works of Vieira, Mendoca, Sousa, et al. (2013).

𝑓(𝑋) = 𝛼(1− 𝑃) + (1− 𝛼)

(︂
1− 𝑁𝑓

𝑁𝑡

)︂
Where 𝛼 is a hyperparameter that decides the tradeoff between the classifier performance 𝑃 , and the size of the
feature subset 𝑁𝑓 with respect to the total number of features 𝑁𝑡. The classifier performance can be the accuracy,
F-score, precision, and so on.

Import modules
import numpy as np
import seaborn as sns
import pandas as pd

Import PySwarms
import pyswarms as ps

Some more magic so that the notebook will reload external python modules;
see http://stackoverflow.com/questions/1907993/autoreload-of-modules-in-ipython
%load_ext autoreload
%autoreload 2
%matplotlib inline

Generating a toy dataset using scikit-learn

We’ll be using sklearn.datasets.make_classification to generate a 100-sample, 15-dimensional
dataset with three classes. We will then plot the distribution of the features in order to give us a qualitative
assessment of the feature-space.

For our toy dataset, we will be rigging some parameters a bit. Out of the 15 features, we’ll have only 4 that are
informative, 1 that are redundant, and 2 that are repeated. Hopefully, we get to have Binary PSO select those that
are informative, and prune those that are redundant or repeated.

1.7. Use-cases 23

http://www.sciencedirect.com/science/article/pii/S1568494613001361

PySwarms Documentation, Release 1.0.2

from sklearn.datasets import make_classification
X, y = make_classification(n_samples=100, n_features=15, n_classes=3,

n_informative=4, n_redundant=1, n_repeated=2,
random_state=1)

Plot toy dataset per feature
df = pd.DataFrame(X)
df['labels'] = pd.Series(y)

sns.pairplot(df, hue='labels');

As we can see, there are some features that causes the two classes to overlap with one another. These might be
features that are better off unselected. On the other hand, we can see some feature combinations where the two
classes are shown to be clearly separated. These features can hopefully be retained and selected by the binary PSO
algorithm.

We will then use a simple logistic regression technique using sklearn.linear_model.
LogisticRegression to perform classification. A simple test of accuracy will be used to assess the
performance of the classifier.

24 Chapter 1. Launching pad

PySwarms Documentation, Release 1.0.2

Writing the custom-objective function

As seen above, we can write our objective function by simply taking the performance of the classifier (in this case,
the accuracy), and the size of the feature subset divided by the total (that is, divided by 10), to return an error in
the data. We’ll now write our custom-objective function

from sklearn import linear_model

Create an instance of the classifier
classifier = linear_model.LogisticRegression()

Define objective function
def f_per_particle(m, alpha):

"""Computes for the objective function per particle

Inputs

m : numpy.ndarray

Binary mask that can be obtained from BinaryPSO, will
be used to mask features.

alpha: float (default is 0.5)
Constant weight for trading-off classifier performance
and number of features

Returns

numpy.ndarray

Computed objective function
"""
total_features = 15
Get the subset of the features from the binary mask
if np.count_nonzero(m) == 0:

X_subset = X
else:

X_subset = X[:,m==1]
Perform classification and store performance in P
classifier.fit(X_subset, y)
P = (classifier.predict(X_subset) == y).mean()
Compute for the objective function
j = (alpha * (1.0 - P)

+ (1.0 - alpha) * (1 - (X_subset.shape[1] / total_features)))

return j

def f(x, alpha=0.88):
"""Higher-level method to do classification in the
whole swarm.

Inputs

x: numpy.ndarray of shape (n_particles, dimensions)

The swarm that will perform the search

Returns

numpy.ndarray of shape (n_particles,)

The computed loss for each particle
"""
n_particles = x.shape[0]
j = [f_per_particle(x[i], alpha) for i in range(n_particles)]
return np.array(j)

1.7. Use-cases 25

PySwarms Documentation, Release 1.0.2

Using Binary PSO

With everything set-up, we can now use Binary PSO to perform feature selection. For now, we’ll be doing a
global-best solution by setting the number of neighbors equal to the number of particles. The hyperparameters are
also set arbitrarily. Moreso, we’ll also be setting the distance metric as 2 (truth is, it’s not really relevant because
each particle will see one another).

Initialize swarm, arbitrary
options = {'c1': 0.5, 'c2': 0.5, 'w':0.9, 'k': 30, 'p':2}

Call instance of PSO
dimensions = 15 # dimensions should be the number of features
optimizer.reset()
optimizer = ps.discrete.BinaryPSO(n_particles=30, dimensions=dimensions,
→˓options=options)

Perform optimization
cost, pos = optimizer.optimize(f, print_step=100, iters=1000, verbose=2)

Iteration 1/1000, cost: 0.2776
Iteration 101/1000, cost: 0.2792
Iteration 201/1000, cost: 0.2624
Iteration 301/1000, cost: 0.2632
Iteration 401/1000, cost: 0.2544
Iteration 501/1000, cost: 0.3208
Iteration 601/1000, cost: 0.2376
Iteration 701/1000, cost: 0.2944
Iteration 801/1000, cost: 0.3224
Iteration 901/1000, cost: 0.3464
================================
Optimization finished!
Final cost: 0.0000
Best value: 0.000000 1.000000 0.000000 1.000000 0.000000 1.000000 ...

We can then train the classifier using the positions found by running another instance of logistic regression. We
can compare the performance when we’re using the full set of features

Create two instances of LogisticRegression
classfier = linear_model.LogisticRegression()

Get the selected features from the final positions
X_selected_features = X[:,pos==1] # subset

Perform classification and store performance in P
classifier.fit(X_selected_features, y)

Compute performance
subset_performance = (c1.predict(X_selected_features) == y).mean()

print('Subset performance: %.3f' % (subset_performance))

Subset performance: 0.680

Another important advantage that we have is that we were able to reduce the features (or do dimensionality reduc-
tion) on our data. This can save us from the curse of dimensionality, and may in fact speed up our classification.

Let’s plot the feature subset that we have:

Plot toy dataset per feature
df1 = pd.DataFrame(X_selected_features)

(continues on next page)

26 Chapter 1. Launching pad

http://www.stat.ucla.edu/~sabatti/statarray/textr/node5.html

PySwarms Documentation, Release 1.0.2

(continued from previous page)

df1['labels'] = pd.Series(y)

sns.pairplot(df1, hue='labels')

1.7.2 Solving the Inverse Kinematics problem using Particle Swarm Optimiza-
tion

In this example, we are going to use the pyswarms library to solve a 6-DOF (Degrees of Freedom) Inverse
Kinematics (IK) problem by treating it as an optimization problem. We will use the pyswarms library to find an
optimal solution from a set of candidate solutions.

Import modules
import numpy as np

Import PySwarms
import pyswarms as ps

Some more magic so that the notebook will reload external python modules;
see http://stackoverflow.com/questions/1907993/autoreload-of-modules-in-ipython

(continues on next page)

1.7. Use-cases 27

PySwarms Documentation, Release 1.0.2

(continued from previous page)

%load_ext autoreload
%autoreload 2

Introduction

Inverse Kinematics is one of the most challenging problems in robotics. The problem involves finding an optimal
pose for a manipulator given the position of the end-tip effector as opposed to forward kinematics, where the
end-tip position is sought given the pose or joint configuration. Normally, this position is expressed as a point in a
coordinate system (e.g., in a Cartesian system with 𝑥, 𝑦 and 𝑧 coordinates). However, the pose of the manipulator
can also be expressed as the collection of joint variables that describe the angle of bending or twist (in revolute
joints) or length of extension (in prismatic joints).

IK is particularly difficult because an abundance of solutions can arise. Intuitively, one can imagine that a robotic
arm can have multiple ways of reaching through a certain point. It’s the same when you touch the table and move
your arm without moving the point you’re touching the table at. Moreover, the calculation of these positions can
be very difficult. Simple solutions can be found for 3-DOF manipulators but trying to solve the problem for 6 or
even more DOF can lead to challenging algebraic problems.

IK as an Optimization Problem

In this implementation, we are going to use a 6-DOF Stanford Manipulator with 5 revolute joints and 1 prismatic
joint. Furthermore, the constraints of the joints are going to be as follows:

Parameters Lower Boundary Upper Boundary
𝜃1 −𝜋 𝜋
𝜃2 −𝜋

2
𝜋
2

𝑑3 1 3
𝜃4 −𝜋 𝜋
𝜃5 − 5𝜋

36
5𝜋
36

𝜃6 −𝜋 𝜋

Table 1: Physical constraints for the joint variables

Now, if we are given an end-tip position (in this case a 𝑥𝑦𝑧 coordinate) we need to find the optimal parameters
with the constraints imposed in Table 1. These conditions are then sufficient in order to treat this problem as an
optimization problem. We define our parameter vector X as follows:

X := [𝜃1 𝜃2 𝑑3 𝜃4 𝜃5]

And for our end-tip position we define the target vector T as:

T := [𝑇𝑥 𝑇𝑦 𝑇𝑧]

We can then start implementing our optimization algorithm.

Initializing the Swarm

The main idea for PSO is that we set a swarm S composed of particles P𝑛 into a search space in order to find the
optimal solution. The movement of the swarm depends on the cognitive (𝑐1) and social (𝑐2) of all the particles.
The cognitive component speaks of the particle’s bias towards its personal best from its past experience (i.e., how
attracted it is to its own best position). The social component controls how the particles are attracted to the best
score found by the swarm (i.e., the global best). High 𝑐1 paired with low 𝑐2 values can often cause the swarm to
stagnate. The inverse can cause the swarm to converge too fast, resulting in suboptimal solutions.

28 Chapter 1. Launching pad

PySwarms Documentation, Release 1.0.2

We define our particle P as:

P := X

And the swarm as being composed of 𝑁 particles with certain positions at a timestep 𝑡:

S𝑡 := [P1 P2 ... P𝑁]

In this implementation, we designate P1 as the initial configuration of the manipulator at the zero-position. This
means that the angles are equal to 0 and the link offset is also zero. We then generate the 𝑁 − 1 particles using a
uniform distribution which is controlled by the hyperparameter 𝜖.

Finding the global optimum

In order to find the global optimum, the swarm must be moved. This movement is then translated by an update of
the current position given the swarm’s velocity V. That is:

S𝑡+1 = S𝑡 +V𝑡+1

The velocity is then computed as follows:

V𝑡+1 = 𝑤V𝑡 + 𝑐1𝑟1(p𝑏𝑒𝑠𝑡 − p) + 𝑐2𝑟2(g𝑏𝑒𝑠𝑡 − p)

Where 𝑟1 and 𝑟2 denote random values in the intervall [0, 1], p𝑏𝑒𝑠𝑡 is the best and p is the current personal position
and g𝑏𝑒𝑠𝑡 is the best position of all the particles. Moreover, 𝑤 is the inertia weight that controls the “memory” of
the swarm’s previous position.

Preparations

Let us now see how this works with the pyswarms library. We use the point [−2, 2, 3] as our target for which
we want to find an optimal pose of the manipulator. We start by defining a function to get the distance from the
current position to the target position:

def distance(query, target):
x_dist = (target[0] - query[0])**2
y_dist = (target[1] - query[1])**2
z_dist = (target[2] - query[2])**2
dist = np.sqrt(x_dist + y_dist + z_dist)
return dist

We are going to use the distance function to compute the cost, the further away the more costly the position is.

The optimization algorithm needs some parameters (the swarm size, 𝑐1, 𝑐2 and 𝜖). For the options (𝑐1,𝑐2 and 𝑤)
we have to create a dictionary and for the constraints a tuple with a list of the respective minimal values and a list
of the respective maximal values. The rest can be handled with variables. Additionally, we define the joint lengths
to be 3 units long:

swarm_size = 20
dim = 6 # Dimension of X
epsilon = 1.0
options = {'c1': 1.5, 'c2':1.5, 'w':0.5}

constraints = (np.array([-np.pi , -np.pi/2 , 1 , -np.pi , -5*np.pi/36 , -np.pi]),
np.array([np.pi , np.pi/2 , 3 , np.pi , 5*np.pi/36 , np.pi]))

d1 = d2 = d3 = d4 = d5 = d6 = 3

In order to obtain the current position, we need to calculate the matrices of rotation and translation for every
joint. Here we use the Denvait-Hartenberg parameters for that. So we define a function that calculates these. The
function uses the rotation angle and the extension 𝑑 of a prismatic joint as input:

1.7. Use-cases 29

https://en.wikipedia.org/wiki/Denavit\T1\textendash {}Hartenberg_parameters

PySwarms Documentation, Release 1.0.2

def getTransformMatrix(theta, d, a, alpha):
T = np.array([[np.cos(theta) , -np.sin(theta)*np.cos(alpha) , np.

→˓sin(theta)*np.sin(alpha) , a*np.cos(theta)],
[np.sin(theta) , np.cos(theta)*np.cos(alpha) , -np.

→˓cos(theta)*np.sin(alpha) , a*np.sin(theta)],
[0 , np.sin(alpha) , np.cos(alpha)

→˓ , d],
[0 , 0 , 0

→˓ , 1]
])

return T

Now we can calculate the transformation matrix to obtain the end tip position. For this we create another function
that takes our vector X with the joint variables as input:

def get_end_tip_position(params):
Create the transformation matrices for the respective joints
t_00 = np.array([[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]])
t_01 = getTransformMatrix(params[0] , d2 , 0 , -np.pi/2)
t_12 = getTransformMatrix(params[1] , d2 , 0 , -np.pi/2)
t_23 = getTransformMatrix(0 , params[2] , 0 , -np.pi/2)
t_34 = getTransformMatrix(params[3] , d4 , 0 , -np.pi/2)
t_45 = getTransformMatrix(params[4] , 0 , 0 , np.pi/2)
t_56 = getTransformMatrix(params[5] , d6 ,0 , 0)

Get the overall transformation matrix
end_tip_m = t_00.dot(t_01).dot(t_12).dot(t_23).dot(t_34).dot(t_45).dot(t_56)

The coordinates of the end tip are the 3 upper entries in the 4th column
pos = np.array([end_tip_m[0,3],end_tip_m[1,3],end_tip_m[2,3]])
return pos

The last thing we need to prepare in order to run the algorithm is the actual function that we want to optimize. We
just need to calculate the distance between the position of each swarm particle and the target point:

def opt_func(X):
n_particles = X.shape[0] # number of particles
target = np.array([-2,2,3])
dist = [distance(get_end_tip_position(X[i]), target) for i in range(n_

→˓particles)]
return np.array(dist)

Running the algorithm

Braced with these preparations we can finally start using the algorithm:

%%time
Call an instance of PSO
optimizer = ps.single.GlobalBestPSO(n_particles=swarm_size,

dimensions=dim,
options=options,
bounds=constraints)

Perform optimization
cost, joint_vars = optimizer.optimize(opt_func, iters=1000)

INFO:pyswarms.single.global_best:Iteration 1/1000, cost: 0.9638223076369133
INFO:pyswarms.single.global_best:Iteration 101/1000, cost: 2.5258875519324167e-07
INFO:pyswarms.single.global_best:Iteration 201/1000, cost: 4.7236564972673785e-14
INFO:pyswarms.single.global_best:Iteration 301/1000, cost: 0.0

(continues on next page)

30 Chapter 1. Launching pad

PySwarms Documentation, Release 1.0.2

(continued from previous page)

INFO:pyswarms.single.global_best:Iteration 401/1000, cost: 0.0
INFO:pyswarms.single.global_best:Iteration 501/1000, cost: 0.0
INFO:pyswarms.single.global_best:Iteration 601/1000, cost: 0.0
INFO:pyswarms.single.global_best:Iteration 701/1000, cost: 0.0
INFO:pyswarms.single.global_best:Iteration 801/1000, cost: 0.0
INFO:pyswarms.single.global_best:Iteration 901/1000, cost: 0.0
INFO:pyswarms.single.global_best:================================
Optimization finished!
Final cost: 0.0000
Best value: [-2.182725 1.323111 1.579636 ...]

Now let’s see if the algorithm really worked and test the output for joint_vars:

print(get_end_tip_position(joint_vars))

[-2. 2. 3.]

Hooray! That’s exactly the position we wanted the tip to be in. Of course this example is quite primitive. Some
extensions of this idea could involve the consideration of the current position of the manipulator and the amount
of rotation and extension in the optimization function such that the result is the path with the least movement.

1.8 Contributing

Contributions are welcome, and they are greatly appreciated! Every little bit helps, and credit will always be
given.

You can contribute in many ways:

1.8.1 Types of Contributions

Report Bugs

Report bugs at https://github.com/ljvmiranda921/pyswarms/issues.

If you are reporting a bug, please include:

• Your operating system name and version.

• Any details about your local setup that might be helpful in troubleshooting.

• Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug” and “help wanted” is open to whoever
wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “enhancement” and “help wanted” is open to
whoever wants to implement it. Those that are tagged with “first-timers-only” is suitable for those getting started
in open-source software.

1.8. Contributing 31

https://github.com/ljvmiranda921/pyswarms/issues

PySwarms Documentation, Release 1.0.2

Write Documentation

PySwarms could always use more documentation, whether as part of the official PySwarms docs, in docstrings,
or even on the web in blog posts, articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/ljvmiranda921/pyswarms/issues.

If you are proposing a feature:

• Explain in detail how it would work.

• Keep the scope as narrow as possible, to make it easier to implement.

• Remember that this is a volunteer-driven project, and that contributions are welcome :)

1.8.2 Get Started!

Ready to contribute? Here’s how to set up pyswarms for local development.

1. Fork the pyswarms repo on GitHub.

2. Clone your fork locally:

$ git clone git@github.com:your_name_here/pyswarms.git

3. Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you
set up your fork for local development:

$ mkvirtualenv pyswarms
$ cd pyswarms/
$ python setup.py develop

4. Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

5. When you’re done making changes, check that your changes pass flake8 and the tests, including testing
other Python versions with tox. In addition, ensure that your code is formatted using black:

$ flake8 pyswarms tests
$ black pyswarms tests
$ python setup.py test or py.test
$ tox

To get flake8, black, and tox, just pip install them into your virtualenv. If you wish, you can add pre-commit
hooks for both flake8 and black to make all formatting easier.

6. Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

In brief, commit messages should follow these conventions:

• Always contain a subject line which briefly describes the changes made. For example “Update CON-
TRIBUTING.rst”.

• Subject lines should not exceed 50 characters.

32 Chapter 1. Launching pad

https://github.com/ljvmiranda921/pyswarms/issues

PySwarms Documentation, Release 1.0.2

• The commit body should contain context about the change - how the code worked before, how it works
now and why you decided to solve the issue in the way you did.

More detail on commit guidelines can be found at https://chris.beams.io/posts/git-commit

7. Submit a pull request through the GitHub website.

1.8.3 Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

1. The pull request should include tests.

2. If the pull request adds functionality, the docs should be updated. Put your new functionality into a function
with a docstring, and add the feature to the list in README.rst.

3. The pull request should work for Python 2.7, 3.4, 3.5, and above. Check https://travis-ci.org/ljvmiranda921/
pyswarms/pull_requests and make sure that the tests pass for all supported Python versions.

1.9 Understanding the PySwarms API

There are three main layers in PySwarms’ main API:

• Optimizers: includes all off-the-shelf implementations of most swarm intelligence algorithms

• Base: base API where most Optimizer implementations were based upon. Each Base module is designed
with respect to the problem domain they’re trying to solve: single-continuous, discrete, (in the future)
multiobjective, constrained, etc.

• Backend: backend API that exposes common operations for any swarm algorithm such as swarm initializa-
tion, global best computation, nearest neighbor search, etc.

You can find the structure of the main PySwarms API in the figure below:

1.9. Understanding the PySwarms API 33

https://chris.beams.io/posts/git-commit
https://travis-ci.org/ljvmiranda921/pyswarms/pull_requests
https://travis-ci.org/ljvmiranda921/pyswarms/pull_requests

PySwarms Documentation, Release 1.0.2

When contributing to PySwarms, you can start off with any of the Layers specified above. Right now, we would
really appreciate contributions from the Base Layer below. Some of which that need some dedicated contributions:

• ConstrainedOptimizer (in Base Layer)

• MultiObjectiveOptimizer (in Base Layer)

• Different Topologies (in Backend Layer)

If we can have a strong set of native APIs for the low-level layers, it will then be very easy to implement different
swarm algorithms. Of course, for your personal needs, you can simply inherit any of the classes in PySwarms and
modify them according to your own specifications.

Remember, when you want to implement your own Optimizer, there is no need to go from Backend to Optimizers
layer. Instead, you can just import the pyswarms.backend.swarms.Swarm class and the classes in the
pyswarms.backend.topology module.

1.10 Writing your own optimization loop

The backend module provides a lot of helper methods for you to customize your swarm implementation. This
gives you a black-box approach by requiring you to write your own optimization-loop.

There are two important components for any swarm implementation:

• The Swarm class, containing all important attributes and properties of the swarm; and

• The Topology class, governing how the swarm will behave during optimization.

The main idea is that for every iteration, you interact with the Swarm class using the methods found in the Topol-
ogy class (or optionally, in pyswarms.backend.operators). You continuously take the attributes present
in Swarm, and update them using the operations your algorithm requires. Together with some methods found in
pyswarms.backend.generators and pyswarms.backend.operators, it is possible to create dif-
ferent kinds of swarm implementations.

34 Chapter 1. Launching pad

PySwarms Documentation, Release 1.0.2

1.10.1 The Swarm Class

pyswarms.backend.swarms.Swarm acts as a data-class that keeps all necessary attributes in a given swarm
implementation. You initialize it by providing the initial position and velocity matrices. For the current iteration,
you can obtain the following information from the class:

• position: the current position-matrix of the swarm. Each row is a particle and each column is its position
on a given dimension.

• velocity: the current velocity-matrix of the swarm. Each row is a particle and each column is its velocity
on a given dimension.

• pbest_pos: the personal best position of each particle that corresponds to the personal best cost.

• pbest_cost: the personal best fitness attained by the particle since the first iteration.

• best_pos: the best position found by the swarm that corresponds to the best cost.

• best_cost: the best fitness found by the swarm.

• options: additional options that you can use for your particular needs. As an example, the
GlobalBestPSO implementation uses this to store the cognitive and social parameters of the swarm.

1.10.2 The Topology Class

pyswarms.backend.base.topology houses all operations that you can use on the Swarm attributes. Cur-
rently, the Star and Ring topologies are implemented, but more topologies will still be done in the future. A
Topology implements three methods governing swarm behavior:

• compute_gbest: computes the best particle (both cost and position) given a swarm instance.

• compute_position: computes the next position of the swarm given its current position.

• compute_velocity: computes the velocity of the swarm given its attributes.

Needless to say, these three methods will differ depending on the topology present. All these methods take in
an instance of the Swarm class, and outputs the necessary matrices. The advantage of using this class is that it
abstracts away all the internals of implementing a swarm algorithm. You just need to provide the topology, and
call its methods right away.

1.11 Contributing your own optimizer

PySwarms aims to be the go-to library for various PSO implementations, so if you are a researcher in swarm
intelligence or a developer who wants to contribute, then read on this guide!

As a preliminary, here is a checklist whenever you will implement an optimizer:

• Propose an optimizer

• Write optimizer by inheriting from base classes

• Write a unit test

1.11.1 Proposing an optimizer

We wanted to make sure that PySwarms is highly-usable, and thus it is important that optimizers included in this
library are either (1) classic textbook-PSO techniques or (2) highly-cited, published, optimization algorithms.

In case you wanted to include your optimization algorithm in this library, please raise an issue and add a short
abstract on what your optimizer does. A link to a published paper (it’s okay if it’s behind a paywall) would be
really helpful!

1.11. Contributing your own optimizer 35

PySwarms Documentation, Release 1.0.2

1.11.2 Inheriting from base classes

Most optimizers in this library inherit its attributes and methods from a set of built-in base classes. You can check
the existing classes in pyswarms.base.

For example, if we take the pyswarms.base.base_single class, a base-class for standard single-objective
continuous optimization algorithms such as global-best PSO (pyswarms.single.global_best) and local-
best PSO (pyswarms.single.local_best), we can see that it inherits a set of methods as seen below:

The required methods can be seen in the base classes, and will raise a NotImplementedError if not called.
Additional methods, private or not, can also be added depending on the needs of your optimizer.

A short note on keyword arguments

The role of keyword arguments, or kwargs in short, is to act as a container for all other parameters needed for
the optimizer. You can define these things in your code, and create assertions to make all of them required.
However, note that in some implementations, required options might include c1, c2, and w. This is the case in
pyswarms.base.bases for instance.

A short note on assertions()

You might notice that in most base classes, an assertions() method is being called. This aims to check if the
user-facing input are correct. Although the method is called “assertions”, please make all user-facing catches as
raised Exceptions.

A short note on __init__.py

We make sure that everything can be imported when the whole pyswarms library is called. Thus, please make
sure to also edit the accompanying __init__.py file in the directory you are working on.

For example, if you write your optimizer class MyOptimizer inside a file called my_optimizer.py, and
you are working under the /single directory, please update the __init__.py like the following:

36 Chapter 1. Launching pad

PySwarms Documentation, Release 1.0.2

from .global_best import GlobalBestPSO
from .local_best import LocalBestPSO
Add your module
from .my_optimizer import MyOptimizer

__all__ = [
"GlobalBestPSO",
"LocalBestPSO",
"MyOptimizer" # Add your class
]

This ensures that it will be automatically initialized when the whole library is imported.

1.11.3 Writing unit tests

Testing is an important element of developing PySwarms and we want everything to be as smooth as possible.
Especially, when working on the build and integrating new features. In this case, we provide the tests module
in the package. For writing the test, we use the pytest module. In case you add a test for your optimizer, use
the same naming conventions that were used in the existing ones.

You can perform separate checks by

$ python -m pytest tests.optimizers.<test_myoptimizer>

For more details on running the tests see here.

1.12 Backend

The main workhorse of PySwarms is the backend module. It contains various primitive methods and classes to
help you create your own custom swarm implementation. The high-level PSO implementations in this library such
as GlobalBestPSO and LocalBestPSO were built using the backend module.

1.12.1 pyswarms.backend package

You can import all the native helper methods in this package using the command:

import pyswarms.backend as P

Then call the methods found in each module. Note that these methods interface with the Swarm class provided in
the pyswarms.backend.swarms module.

pyswarms.backend.generators module

Swarm Generation Backend

This module abstracts how a swarm is generated. You can see its implementation in our base classes. In addition,
you can use all the methods here to dictate how a swarm is initialized for your custom PSO.

pyswarms.backend.generators.create_swarm(n_particles, dimensions, discrete=False, bi-
nary=False, options={}, bounds=None, cen-
ter=1.0, init_pos=None, clamp=None)

Abstract the generate_swarm() and generate_velocity() methods

Parameters

• n_particles (int) – number of particles to be generated in the swarm.

• dimensions (int) – number of dimensions to be generated in the swarm

1.12. Backend 37

https://docs.pytest.org/en/latest/usage.html

PySwarms Documentation, Release 1.0.2

• options (dict (default is empty dict {})) – Swarm options, for example, c1, c2, etc.

• discrete (bool (default is False)) – Creates a discrete swarm

• binary (bool (default is False)) – generate a binary matrix

• bounds (tuple of np.ndarray or list (default is None)) – a tuple of size 2 where the
first entry is the minimum bound while the second entry is the maximum bound. Each
array must be of shape (dimensions,).

• center (numpy.ndarray (default is 1)) – a list of initial positions for generating
the swarm

• init_pos (numpy.ndarray (default is None)) – option to explicitly set the parti-
cles’ initial positions. Set to None if you wish to generate the particles randomly.

• clamp (tuple of floats (default is None)) – a tuple of size 2 where the first entry is the
minimum velocity and the second entry is the maximum velocity. It sets the limits for
velocity clamping.

Returns a Swarm class

Return type pyswarms.backend.swarms.Swarm

pyswarms.backend.generators.generate_discrete_swarm(n_particles, dimen-
sions, binary=False,
init_pos=None)

Generate a discrete swarm

Parameters

• n_particles (int) – number of particles to be generated in the swarm.

• dimensions (int) – number of dimensions to be generated in the swarm.

• binary (bool (default is False)) – generate a binary matrix

• init_pos (numpy.ndarray (default is None)) – option to explicitly set the parti-
cles’ initial positions. Set to None if you wish to generate the particles randomly.

Returns swarm matrix of shape (n_particles, n_dimensions)

Return type numpy.ndarray

Raises

• ValueError – When init_pos during binary=True does not contain two unique val-
ues.

• TypeError – When the argument passed to n_particles or dimensions is incorrect.

pyswarms.backend.generators.generate_swarm(n_particles, dimensions, bounds=None,
center=1.0, init_pos=None)

Generate a swarm

Parameters

• n_particles (int) – number of particles to be generated in the swarm.

• dimensions (int) – number of dimensions to be generated in the swarm

• bounds (tuple of np.ndarray or list (default is None)) – a tuple of size 2 where the
first entry is the minimum bound while the second entry is the maximum bound. Each
array must be of shape (dimensions,).

• center (numpy.ndarray or float (default is 1)) – controls the mean or center
whenever the swarm is generated randomly.

• init_pos (numpy.ndarray (default is None)) – option to explicitly set the parti-
cles’ initial positions. Set to None if you wish to generate the particles randomly.

Returns swarm matrix of shape (n_particles, n_dimensions)

38 Chapter 1. Launching pad

PySwarms Documentation, Release 1.0.2

Return type numpy.ndarray

Raises

• ValueError – When the shapes and values of bounds, dimensions, and init_pos are
inconsistent.

• TypeError – When the argument passed to bounds is not an iterable.

pyswarms.backend.generators.generate_velocity(n_particles, dimensions,
clamp=None)

Initialize a velocity vector

Parameters

• n_particles (int) – number of particles to be generated in the swarm.

• dimensions (int) – number of dimensions to be generated in the swarm.

• clamp (tuple of floats (default is None)) – a tuple of size 2 where the first entry is the
minimum velocity and the second entry is the maximum velocity. It sets the limits for
velocity clamping.

Returns velocity matrix of shape (n_particles, dimensions)

Return type numpy.ndarray

pyswarms.backend.handlers module

Handlers

This module provides Handler classes for the position as well as the velocity of particles. This is necessary
when boundary conditions are imposed on the PSO algorithm. Particles that do not stay inside these boundary
conditions have to be handled by either adjusting their position after they left the bounded search space or adjusting
their velocity when it would position them outside the search space. In particular, this approach is important if the
optimium of a function is near the boundaries. For the following documentation let 𝑥𝑖,𝑡,𝑑 be the 𝑑 th coordinate of
the particle 𝑖 ‘s position vector at the time 𝑡, 𝑙𝑏 the vector of the lower boundaries and 𝑢𝑏 the vector of the upper
boundaries. The algorithms in this module are adapted from [SH2010]

[SH2010] Sabine Helwig, “Particle Swarms for Constrained Optimization”, PhD thesis, Friedrich-Alexander Uni-
versität Erlangen-Nürnberg, 2010.

class pyswarms.backend.handlers.BoundaryHandler(strategy)

intermediate(position, bounds, **kwargs)
Set the particle to an intermediate position

This method resets particles that exceed the bounds to an intermediate position between the boundary
and their earlier position. Namely, it changes the coordinate of the out-of-bounds axis to the middle
value between the previous position and the boundary of the axis. The following equation describes
this strategy:

𝑥𝑖,𝑡,𝑑 =

⎧⎪⎨⎪⎩
1
2 (𝑥𝑖,𝑡−1,𝑑 + 𝑙𝑏𝑑) if 𝑥𝑖,𝑡,𝑑 < 𝑙𝑏𝑑
1
2 (𝑥𝑖,𝑡−1,𝑑 + 𝑢𝑏𝑑) if 𝑥𝑖,𝑡,𝑑 > 𝑢𝑏𝑑

𝑥𝑖,𝑡,𝑑 otherwise

nearest(position, bounds, **kwargs)
Set position to nearest bound

This method resets particles that exceed the bounds to the nearest available boundary. For every axis
on which the coordiantes of the particle surpasses the boundary conditions the coordinate is set to the

1.12. Backend 39

PySwarms Documentation, Release 1.0.2

respective bound that it surpasses. The following equation describes this strategy:

𝑥𝑖,𝑡,𝑑 =

⎧⎪⎨⎪⎩
𝑙𝑏𝑑 if 𝑥𝑖,𝑡,𝑑 < 𝑙𝑏𝑑

𝑢𝑏𝑑 if 𝑥𝑖,𝑡,𝑑 > 𝑢𝑏𝑑

𝑥𝑖,𝑡,𝑑 otherwise

periodic(position, bounds, **kwargs)
Sets the particles a periodic fashion

This method resets the particles that exeed the bounds by using the modulo function to cut down the
position. This creates a virtual, periodic plane which is tiled with the search space. The following
equation describtes this strategy:

𝑥𝑖,𝑡,𝑑 =

⎧⎪⎨⎪⎩
𝑢𝑏𝑑 − (𝑙𝑏𝑑 − 𝑥𝑖,𝑡,𝑑) mod 𝑠𝑑 if 𝑥𝑖,𝑡,𝑑 < 𝑙𝑏𝑑

𝑙𝑏𝑑 + (𝑥𝑖,𝑡,𝑑 − 𝑢𝑏𝑑) mod 𝑠𝑑 if 𝑥𝑖,𝑡,𝑑 > 𝑢𝑏𝑑

𝑥𝑖,𝑡,𝑑 otherwise

with

𝑠𝑑 = |𝑢𝑏𝑑 − 𝑙𝑏𝑑|

random(position, bounds, **kwargs)
Set position to random location

This method resets particles that exeed the bounds to a random position inside the boundary conditions.

reflective(position, bounds, **kwargs)
Reflect the particle at the boundary

This method reflects the particles that exceed the bounds at the respective boundary. This means that
the amount that the component which is orthogonal to the exceeds the boundary is mirrored at the
boundary. The reflection is repeated until the position of the particle is within the boundaries. The
following algorithm describes the behaviour of this strategy:

while 𝑥𝑖,𝑡,𝑑 ̸∈ [𝑙𝑏𝑑, 𝑢𝑏𝑑]

do the following:

𝑥𝑖,𝑡,𝑑 =

⎧⎪⎨⎪⎩
2 · 𝑙𝑏𝑑 − 𝑥𝑖,𝑡,𝑑 if 𝑥𝑖,𝑡,𝑑 < 𝑙𝑏𝑑

2 · 𝑢𝑏𝑑 − 𝑥𝑖,𝑡,𝑑 if 𝑥𝑖,𝑡,𝑑 > 𝑢𝑏𝑑

𝑥𝑖,𝑡,𝑑 otherwise

shrink(position, bounds, **kwargs)
Set the particle to the boundary

This method resets particles that exceed the bounds to the intersection of its previous velocity and the
boundary. This can be imagined as shrinking the previous velocity until the particle is back in the valid
search space. Let 𝜎𝑖,𝑡,𝑑 be the 𝑑 th shrinking value of the 𝑖 th particle at the time 𝑡 and 𝑣𝑖,𝑡 the velocity

40 Chapter 1. Launching pad

PySwarms Documentation, Release 1.0.2

of the 𝑖 th particle at the time 𝑡. Then the new position is computed by the following equation:

x𝑖,𝑡 = x𝑖,𝑡−1 + 𝜎𝑖,𝑡v𝑖,𝑡

with

𝜎𝑖,𝑡,𝑑 =

⎧⎪⎨⎪⎩
𝑙𝑏𝑑−𝑥𝑖,𝑡−1,𝑑

𝑣𝑖,𝑡,𝑑
if 𝑥𝑖,𝑡,𝑑 < 𝑙𝑏𝑑

𝑢𝑏𝑑−𝑥𝑖,𝑡−1,𝑑

𝑣𝑖,𝑡,𝑑
if 𝑥𝑖,𝑡,𝑑 > 𝑢𝑏𝑑

1 otherwise

and

𝜎𝑖,𝑡 = min
𝑑=1...𝑛

𝜎𝑖,𝑡,𝑑

class pyswarms.backend.handlers.HandlerMixin
A HandlerMixing class

This class offers some basic functionality for the Handlers.

class pyswarms.backend.handlers.VelocityHandler(strategy)

adjust(velocity, clamp=None, **kwargs)
Adjust the velocity to the new position

The velocity is adjusted such that the following equation holds: .. math:

\mathbf{v_{i,t}} = \mathbf{x_{i,t}} - \mathbf{x_{i,t-1}}

Note: This method should only be used in combination with a position handling operation.

invert(velocity, clamp=None, **kwargs)
Invert the velocity if the particle is out of bounds

The velocity is inverted and shrinked. The shrinking is determined by the kwarg z. The default
shrinking factor is 0.5. For all velocities whose particles are out of bounds the following equation is
applied: .. math:

\mathbf{v_{i,t}} = -z\mathbf{v_{i,t}}

unmodified(velocity, clamp=None, **kwargs)
Leaves the velocity unchanged

zero(velocity, clamp=None, **kwargs)
Set velocity to zero if the particle is out of bounds

pyswarms.backend.operators module

Swarm Operation Backend

This module abstracts various operations in the swarm such as updating the personal best, finding neighbors, etc.
You can use these methods to specify how the swarm will behave.

pyswarms.backend.operators.compute_objective_function(swarm, objective_func,
pool=None, **kwargs)

Evaluate particles using the objective function

1.12. Backend 41

PySwarms Documentation, Release 1.0.2

This method evaluates each particle in the swarm according to the objective function passed.

If a pool is passed, then the evaluation of the particles is done in parallel using multiple processes.

Parameters

• swarm (pyswarms.backend.swarms.Swarm) – a Swarm instance

• objective_func (function) – objective function to be evaluated

• pool (multiprocessing.Pool) – multiprocessing.Pool to be used for parallel
particle evaluation

• kwargs (dict) – arguments for the objective function

Returns Cost-matrix for the given swarm

Return type numpy.ndarray

pyswarms.backend.operators.compute_pbest(swarm)
Update the personal best score of a swarm instance

You can use this method to update your personal best positions.

import pyswarms.backend as P
from pyswarms.backend.swarms import Swarm

my_swarm = P.create_swarm(n_particles, dimensions)

Inside the for-loop...
for i in range(iters):

It updates the swarm internally
my_swarm.pbest_pos, my_swarm.pbest_cost = P.update_pbest(my_swarm)

It updates your current_pbest with the personal bests acquired by comparing the (1) cost of the current
positions and the (2) personal bests your swarm has attained.

If the cost of the current position is less than the cost of the personal best, then the current position replaces
the previous personal best position.

Parameters swarm (pyswarms.backend.swarm.Swarm) – a Swarm instance

Returns

• numpy.ndarray – New personal best positions of shape (n_particles,
n_dimensions)

• numpy.ndarray – New personal best costs of shape (n_particles,)

pyswarms.backend.operators.compute_position(swarm, bounds, bh)
Update the position matrix

This method updates the position matrix given the current position and the velocity. If bounded, the positions
are handled by a BoundaryHandler instance.

import pyswarms.backend as P
from pyswarms.swarms.backend import Swarm, VelocityHandler

my_swarm = P.create_swarm(n_particles, dimensions)
my_bh = BoundaryHandler(strategy="intermediate")

for i in range(iters):
Inside the for-loop
my_swarm.position = compute_position(my_swarm, bounds, my_bh)

Parameters

• swarm (pyswarms.backend.swarms.Swarm) – a Swarm instance

42 Chapter 1. Launching pad

PySwarms Documentation, Release 1.0.2

• bounds (tuple of np.ndarray or list (default is None)) – a tuple of size 2 where the
first entry is the minimum bound while the second entry is the maximum bound. Each
array must be of shape (dimensions,).

• bh (pyswarms.backend.handlers.BoundaryHandler) – a BoundaryHan-
dler object with a specified handling strategy For further information see pyswarms.
backend.handlers.

Returns New position-matrix

Return type numpy.ndarray

pyswarms.backend.operators.compute_velocity(swarm, clamp, vh, bounds=None)
Update the velocity matrix

This method updates the velocity matrix using the best and current positions of the swarm. The veloc-
ity matrix is computed using the cognitive and social terms of the swarm. The velocity is handled by a
VelocityHandler.

A sample usage can be seen with the following:

import pyswarms.backend as P
from pyswarms.swarms.backend import Swarm, VelocityHandler

my_swarm = P.create_swarm(n_particles, dimensions)
my_vh = VelocityHandler(strategy="invert")

for i in range(iters):
Inside the for-loop
my_swarm.velocity = compute_velocity(my_swarm, clamp, my_vh, bounds)

Parameters

• swarm (pyswarms.backend.swarms.Swarm) – a Swarm instance

• clamp (tuple of floats (default is None)) – a tuple of size 2 where the first entry is the
minimum velocity and the second entry is the maximum velocity. It sets the limits for
velocity clamping.

• vh (pyswarms.backend.handlers.VelocityHandler) – a VelocityHandler
object with a specified handling strategy. For further information see pyswarms.
backend.handlers.

• bounds (tuple of np.ndarray or list (default is None)) – a tuple of size 2 where the
first entry is the minimum bound while the second entry is the maximum bound. Each
array must be of shape (dimensions,).

Returns Updated velocity matrix

Return type numpy.ndarray

1.12.2 pyswarms.handlers package

This package implements different handling strategies for the optimiziation using boundary conditions. The strate-
gies help avoiding that particles leave the defined search space. There are two Handler classes that provide these
functionalities, the BoundaryHandler and the VelocityHandler.

pyswarms.handlers class

Handlers

This module provides Handler classes for the position as well as the velocity of particles. This is necessary
when boundary conditions are imposed on the PSO algorithm. Particles that do not stay inside these boundary

1.12. Backend 43

PySwarms Documentation, Release 1.0.2

conditions have to be handled by either adjusting their position after they left the bounded search space or adjusting
their velocity when it would position them outside the search space. In particular, this approach is important if the
optimium of a function is near the boundaries. For the following documentation let 𝑥𝑖,𝑡,𝑑 be the 𝑑 th coordinate of
the particle 𝑖 ‘s position vector at the time 𝑡, 𝑙𝑏 the vector of the lower boundaries and 𝑢𝑏 the vector of the upper
boundaries. The algorithms in this module are adapted from [SH2010]

[SH2010] Sabine Helwig, “Particle Swarms for Constrained Optimization”, PhD thesis, Friedrich-Alexander Uni-
versität Erlangen-Nürnberg, 2010.

class pyswarms.backend.handlers.BoundaryHandler(strategy)
Bases: pyswarms.backend.handlers.HandlerMixin

__call__(position, bounds, **kwargs)
Apply the selected strategy to the position-matrix given the bounds

Parameters

• position (np.ndarray) – The swarm position to be handled

• bounds (tuple of np.ndarray or list) – a tuple of size 2 where the first entry is the
minimum bound while the second entry is the maximum bound. Each array must be
of shape (dimensions,)

• kwargs (dict) –

Returns the adjusted positions of the swarm

Return type numpy.ndarray

__init__(strategy)
A BoundaryHandler class

This class offers a way to handle boundary conditions. It contains methods to repair particle positions
outside of the defined boundaries. Following strategies are available for the handling:

• Nearest: Reposition the particle to the nearest bound.

• Random: Reposition the particle randomly in between the bounds.

• Shrink: Shrink the velocity of the particle such that it lands on the bounds.

• Reflective: Mirror the particle position from outside the bounds to inside the bounds.

• Intermediate: Reposition the particle to the midpoint between its current position on the bound
surpassing axis and the bound itself. This only adjusts the axes that surpass the boundaries.

The BoundaryHandler can be called as a function to use the strategy that is passed at initialization to
repair boundary issues. An example for the usage:

from pyswarms.backend import operators as op
from pyswarms.backend.handlers import BoundaryHandler

bh = BoundaryHandler(strategy="reflective")
ops.compute_position(swarm, bounds, handler=bh)

By passing the handler, the compute_position() function now has the ability to reset the parti-
cles by calling the BoundaryHandler inside.

strategy
str – The strategy to use. To see all available strategies, call BoundaryHandler.
strategies

intermediate(position, bounds, **kwargs)
Set the particle to an intermediate position

This method resets particles that exceed the bounds to an intermediate position between the boundary
and their earlier position. Namely, it changes the coordinate of the out-of-bounds axis to the middle

44 Chapter 1. Launching pad

PySwarms Documentation, Release 1.0.2

value between the previous position and the boundary of the axis. The following equation describes
this strategy:

𝑥𝑖,𝑡,𝑑 =

⎧⎪⎨⎪⎩
1
2 (𝑥𝑖,𝑡−1,𝑑 + 𝑙𝑏𝑑) if 𝑥𝑖,𝑡,𝑑 < 𝑙𝑏𝑑
1
2 (𝑥𝑖,𝑡−1,𝑑 + 𝑢𝑏𝑑) if 𝑥𝑖,𝑡,𝑑 > 𝑢𝑏𝑑

𝑥𝑖,𝑡,𝑑 otherwise

nearest(position, bounds, **kwargs)
Set position to nearest bound

This method resets particles that exceed the bounds to the nearest available boundary. For every axis
on which the coordiantes of the particle surpasses the boundary conditions the coordinate is set to the
respective bound that it surpasses. The following equation describes this strategy:

𝑥𝑖,𝑡,𝑑 =

⎧⎪⎨⎪⎩
𝑙𝑏𝑑 if 𝑥𝑖,𝑡,𝑑 < 𝑙𝑏𝑑

𝑢𝑏𝑑 if 𝑥𝑖,𝑡,𝑑 > 𝑢𝑏𝑑

𝑥𝑖,𝑡,𝑑 otherwise

periodic(position, bounds, **kwargs)
Sets the particles a periodic fashion

This method resets the particles that exeed the bounds by using the modulo function to cut down the
position. This creates a virtual, periodic plane which is tiled with the search space. The following
equation describtes this strategy:

𝑥𝑖,𝑡,𝑑 =

⎧⎪⎨⎪⎩
𝑢𝑏𝑑 − (𝑙𝑏𝑑 − 𝑥𝑖,𝑡,𝑑) mod 𝑠𝑑 if 𝑥𝑖,𝑡,𝑑 < 𝑙𝑏𝑑

𝑙𝑏𝑑 + (𝑥𝑖,𝑡,𝑑 − 𝑢𝑏𝑑) mod 𝑠𝑑 if 𝑥𝑖,𝑡,𝑑 > 𝑢𝑏𝑑

𝑥𝑖,𝑡,𝑑 otherwise

with

𝑠𝑑 = |𝑢𝑏𝑑 − 𝑙𝑏𝑑|

random(position, bounds, **kwargs)
Set position to random location

This method resets particles that exeed the bounds to a random position inside the boundary conditions.

reflective(position, bounds, **kwargs)
Reflect the particle at the boundary

This method reflects the particles that exceed the bounds at the respective boundary. This means that
the amount that the component which is orthogonal to the exceeds the boundary is mirrored at the
boundary. The reflection is repeated until the position of the particle is within the boundaries. The
following algorithm describes the behaviour of this strategy:

while 𝑥𝑖,𝑡,𝑑 ̸∈ [𝑙𝑏𝑑, 𝑢𝑏𝑑]

do the following:

𝑥𝑖,𝑡,𝑑 =

⎧⎪⎨⎪⎩
2 · 𝑙𝑏𝑑 − 𝑥𝑖,𝑡,𝑑 if 𝑥𝑖,𝑡,𝑑 < 𝑙𝑏𝑑

2 · 𝑢𝑏𝑑 − 𝑥𝑖,𝑡,𝑑 if 𝑥𝑖,𝑡,𝑑 > 𝑢𝑏𝑑

𝑥𝑖,𝑡,𝑑 otherwise

shrink(position, bounds, **kwargs)
Set the particle to the boundary

This method resets particles that exceed the bounds to the intersection of its previous velocity and the
boundary. This can be imagined as shrinking the previous velocity until the particle is back in the valid

1.12. Backend 45

PySwarms Documentation, Release 1.0.2

search space. Let 𝜎𝑖,𝑡,𝑑 be the 𝑑 th shrinking value of the 𝑖 th particle at the time 𝑡 and 𝑣𝑖,𝑡 the velocity
of the 𝑖 th particle at the time 𝑡. Then the new position is computed by the following equation:

x𝑖,𝑡 = x𝑖,𝑡−1 + 𝜎𝑖,𝑡v𝑖,𝑡

with

𝜎𝑖,𝑡,𝑑 =

⎧⎪⎨⎪⎩
𝑙𝑏𝑑−𝑥𝑖,𝑡−1,𝑑

𝑣𝑖,𝑡,𝑑
if 𝑥𝑖,𝑡,𝑑 < 𝑙𝑏𝑑

𝑢𝑏𝑑−𝑥𝑖,𝑡−1,𝑑

𝑣𝑖,𝑡,𝑑
if 𝑥𝑖,𝑡,𝑑 > 𝑢𝑏𝑑

1 otherwise

and

𝜎𝑖,𝑡 = min
𝑑=1...𝑛

𝜎𝑖,𝑡,𝑑

class pyswarms.backend.handlers.HandlerMixin
Bases: object

A HandlerMixing class

This class offers some basic functionality for the Handlers.

class pyswarms.backend.handlers.VelocityHandler(strategy)
Bases: pyswarms.backend.handlers.HandlerMixin

__call__(velocity, clamp, **kwargs)
Apply the selected strategy to the velocity-matrix given the bounds

Parameters

• velocity (np.ndarray) – The swarm position to be handled

• clamp (tuple of np.ndarray or list) – a tuple of size 2 where the first entry is the
minimum clamp while the second entry is the maximum clamp. Each array must be
of shape (dimensions,)

• kwargs (dict) –

Returns the adjusted positions of the swarm

Return type numpy.ndarray

__init__(strategy)
A VelocityHandler class

This class offers a way to handle velocities. It contains methods to repair the velocities of particles
that exceeded the defined boundaries. Following strategies are available for the handling:

• Unmodified: Returns the unmodified velocites.

• Adjust Returns the velocity that is adjusted to be the distance between the current and the previ-
ous position.

• Invert Inverts and shrinks the velocity by the factor -z.

• Zero Sets the velocity of out-of-bounds particles to zero.

adjust(velocity, clamp=None, **kwargs)
Adjust the velocity to the new position

The velocity is adjusted such that the following equation holds: .. math:

46 Chapter 1. Launching pad

PySwarms Documentation, Release 1.0.2

\mathbf{v_{i,t}} = \mathbf{x_{i,t}} - \mathbf{x_{i,t-1}}

Note: This method should only be used in combination with a position handling operation.

invert(velocity, clamp=None, **kwargs)
Invert the velocity if the particle is out of bounds

The velocity is inverted and shrinked. The shrinking is determined by the kwarg z. The default
shrinking factor is 0.5. For all velocities whose particles are out of bounds the following equation is
applied: .. math:

\mathbf{v_{i,t}} = -z\mathbf{v_{i,t}}

unmodified(velocity, clamp=None, **kwargs)
Leaves the velocity unchanged

zero(velocity, clamp=None, **kwargs)
Set velocity to zero if the particle is out of bounds

1.12.3 pyswarms.topology package

This package implements various swarm topologies that may be useful as you build your own swarm implemen-
tations. Each topology can perform the following:

• Determine the best particle on a given swarm.

• Compute the next position given a current swarm position.

• Compute the velocities given a swarm configuration.

pyswarms.backend.topology.base module

Base class for Topologies

You can use this class to create your own topology. Note that every Topology should implement a way to compute
the (1) best particle, the (2) next position, and the (3) next velocity given the Swarm’s attributes at a given timestep.
Not implementing these methods will raise an error.

In addition, this class must interface with any class found in the pyswarms.backend.swarms.Swarm mod-
ule.

class pyswarms.backend.topology.base.Topology(static, **kwargs)
Bases: abc.ABC

__init__(static, **kwargs)
Initializes the class

compute_gbest(swarm)
Compute the best particle of the swarm and return the cost and position

compute_position(swarm)
Update the swarm’s position-matrix

compute_velocity(swarm)
Update the swarm’s velocity-matrix

pyswarms.backend.topology.star module

A Star Network Topology

1.12. Backend 47

PySwarms Documentation, Release 1.0.2

This class implements a star topology. In this topology, all particles are connected to one another. This social
behavior is often found in GlobalBest PSO optimizers.

class pyswarms.backend.topology.star.Star(static=None, **kwargs)
Bases: pyswarms.backend.topology.base.Topology

__init__(static=None, **kwargs)
Initializes the class

compute_gbest(swarm, **kwargs)
Update the global best using a star topology

This method takes the current pbest_pos and pbest_cost, then returns the minimum cost and position
from the matrix.

import pyswarms.backend as P
from pyswarms.backend.swarms import Swarm
from pyswarm.backend.topology import Star

my_swarm = P.create_swarm(n_particles, dimensions)
my_topology = Star()

Update best_cost and position
swarm.best_pos, swarm.best_cost = my_topology.compute_gbest(my_swarm)

Parameters swarm (pyswarms.backend.swarm.Swarm) – a Swarm instance

Returns

• numpy.ndarray – Best position of shape (n_dimensions,)

• float – Best cost

compute_position(swarm, bounds=None, bh=<pyswarms.backend.handlers.BoundaryHandler
object>)

Update the position matrix

This method updates the position matrix given the current position and the velocity. If bounded, it
waives updating the position.

Parameters

• swarm (pyswarms.backend.swarms.Swarm) – a Swarm instance

• bounds (tuple of np.ndarray or list (default is None)) – a tuple of size 2 where
the first entry is the minimum bound while the second entry is the maximum bound.
Each array must be of shape (dimensions,).

• bh (pyswarms.backend.handlers.BoundaryHandler) – a BoundaryHan-
dler instance

Returns New position-matrix

Return type numpy.ndarray

compute_velocity(swarm, clamp=None, vh=<pyswarms.backend.handlers.VelocityHandler
object>, bounds=None)

Compute the velocity matrix

This method updates the velocity matrix using the best and current positions of the swarm. The
velocity matrix is computed using the cognitive and social terms of the swarm.

A sample usage can be seen with the following:

import pyswarms.backend as P
from pyswarms.backend.swarm import Swarm
from pyswarms.backend.handlers import VelocityHandler

(continues on next page)

48 Chapter 1. Launching pad

PySwarms Documentation, Release 1.0.2

(continued from previous page)

from pyswarms.backend.topology import Star

my_swarm = P.create_swarm(n_particles, dimensions)
my_topology = Star()
my_vh = VelocityHandler(strategy="adjust")

for i in range(iters):
Inside the for-loop
my_swarm.velocity = my_topology.update_velocity(my_swarm, clamp, my_vh,
bounds)

Parameters

• swarm (pyswarms.backend.swarms.Swarm) – a Swarm instance

• clamp (tuple of floats (default is None)) – a tuple of size 2 where the first entry is
the minimum velocity and the second entry is the maximum velocity. It sets the limits
for velocity clamping.

• vh (pyswarms.backend.handlers.VelocityHandler) – a VelocityHan-
dler instance

• bounds (tuple of np.ndarray or list (default is None)) – a tuple of size 2 where
the first entry is the minimum bound while the second entry is the maximum bound.
Each array must be of shape (dimensions,).

Returns Updated velocity matrix

Return type numpy.ndarray

pyswarms.backend.topology.ring module

A Ring Network Topology

This class implements a ring topology. In this topology, the particles are connected with their k nearest neighbors.
This social behavior is often found in LocalBest PSO optimizers.

class pyswarms.backend.topology.ring.Ring(static=False)
Bases: pyswarms.backend.topology.base.Topology

__init__(static=False)
Initializes the class

Parameters static (bool (Default is False)) – a boolean that decides whether the topol-
ogy is static or dynamic

compute_gbest(swarm, p, k, **kwargs)
Update the global best using a ring-like neighborhood approach

This uses the cKDTree method from scipy to obtain the nearest neighbors.

Parameters

• swarm (pyswarms.backend.swarms.Swarm) – a Swarm instance

• p (int {1,2}) – the Minkowski p-norm to use. 1 is the sum-of-absolute values (or
L1 distance) while 2 is the Euclidean (or L2) distance.

• k (int) – number of neighbors to be considered. Must be a positive integer less than
n_particles

Returns

• numpy.ndarray – Best position of shape (n_dimensions,)

• float – Best cost

1.12. Backend 49

PySwarms Documentation, Release 1.0.2

compute_position(swarm, bounds=None, bh=<pyswarms.backend.handlers.BoundaryHandler
object>)

Update the position matrix

This method updates the position matrix given the current position and the velocity. If bounded, it
waives updating the position.

Parameters

• swarm (pyswarms.backend.swarms.Swarm) – a Swarm instance

• bounds (tuple of np.ndarray or list (default is None)) – a tuple of size 2 where
the first entry is the minimum bound while the second entry is the maximum bound.
Each array must be of shape (dimensions,).

• bh (pyswarms.backend.handlers.BoundaryHandler) – a BoundaryHan-
dler instance

Returns New position-matrix

Return type numpy.ndarray

compute_velocity(swarm, clamp=None, vh=<pyswarms.backend.handlers.VelocityHandler
object>, bounds=None)

Compute the velocity matrix

This method updates the velocity matrix using the best and current positions of the swarm. The
velocity matrix is computed using the cognitive and social terms of the swarm.

A sample usage can be seen with the following:

import pyswarms.backend as P
from pyswarms.backend.swarm import Swarm
from pyswarms.backend.handlers import VelocityHandler
from pyswarms.backend.topology import Ring

my_swarm = P.create_swarm(n_particles, dimensions)
my_topology = Ring(static=False)
my_vh = VelocityHandler(strategy="invert")

for i in range(iters):
Inside the for-loop
my_swarm.velocity = my_topology.update_velocity(my_swarm, clamp, my_vh,
bounds)

Parameters

• swarm (pyswarms.backend.swarms.Swarm) – a Swarm instance

• clamp (tuple of floats (default is None)) – a tuple of size 2 where the first entry is
the minimum velocity and the second entry is the maximum velocity. It sets the limits
for velocity clamping.

• vh (pyswarms.backend.handlers.VelocityHandler) – a VelocityHan-
dler instance

• bounds (tuple of np.ndarray or list (default is None)) – a tuple of size 2 where
the first entry is the minimum bound while the second entry is the maximum bound.
Each array must be of shape (dimensions,).

Returns Updated velocity matrix

Return type numpy.ndarray

pyswarms.backend.topology.von_neumann module

A Von Neumann Network Topology

50 Chapter 1. Launching pad

PySwarms Documentation, Release 1.0.2

This class implements a Von Neumann topology.

class pyswarms.backend.topology.von_neumann.VonNeumann(static=None)
Bases: pyswarms.backend.topology.ring.Ring

__init__(static=None)
Initializes the class

Parameters static (bool (Default is False)) – a boolean that decides whether the topol-
ogy is static or dynamic

compute_gbest(swarm, p, r, **kwargs)
Updates the global best using a neighborhood approach

The Von Neumann topology inherits from the Ring topology and uses the same approach to calculate
the global best. The number of neighbors is determined by the dimension and the range. This topology
is always a static topology.

Parameters

• swarm (pyswarms.backend.swarms.Swarm) – a Swarm instance

• r (int) – range of the Von Neumann topology

• p (int {1,2}) – the Minkowski p-norm to use. 1 is the sum-of-absolute values (or
L1 distance) while 2 is the Euclidean (or L2) distance.

Returns

• numpy.ndarray – Best position of shape (n_dimensions,)

• float – Best cost

static delannoy(d, r)
Static helper method to compute Delannoy numbers

This method computes the number of neighbours of a Von Neumann topology, i.e. a Delannoy number,
dependent on the range and the dimension of the search space. The Delannoy numbers are computed
recursively.

Parameters

• d (int) – dimension of the search space

• r (int) – range of the Von Neumann topology

Returns Delannoy number

Return type int

pyswarms.backend.topology.pyramid module

A Pyramid Network Topology

This class implements a pyramid topology. In this topology, the particles are connected by N-dimensional sim-
plices.

class pyswarms.backend.topology.pyramid.Pyramid(static=False)
Bases: pyswarms.backend.topology.base.Topology

__init__(static=False)
Initialize the class

Parameters static (bool (Default is False)) – a boolean that decides whether the topol-
ogy is static or dynamic

compute_gbest(swarm, **kwargs)
Update the global best using a pyramid neighborhood approach

1.12. Backend 51

PySwarms Documentation, Release 1.0.2

This topology uses the Delaunay class from scipy. To prevent precision errors in the Delaunay
class, custom qhull_options were added. Namely, QJ0.001 Qbb Qc Qx. The meaning of
those options is explained in [qhull]. This method is used to triangulate N-dimensional space into
simplices. The vertices of the simplicies consist of swarm particles. This method is adapted from the
work of Lane et al.[SIS2008]

[SIS2008] J. Lane, A. Engelbrecht and J. Gain, “Particle swarm optimization with spatially mean-
ingful neighbours,” 2008 IEEE Swarm Intelligence Symposium, St. Louis, MO, 2008, pp. 1-8. doi:
10.1109/SIS.2008.4668281 [qhull] http://www.qhull.org/html/qh-optq.htm

Parameters swarm (pyswarms.backend.swarms.Swarm) – a Swarm instance

Returns

• numpy.ndarray – Best position of shape (n_dimensions,)

• float – Best cost

compute_position(swarm, bounds=None, bh=<pyswarms.backend.handlers.BoundaryHandler
object>)

Update the position matrix

This method updates the position matrix given the current position and the velocity. If bounded, it
waives updating the position.

Parameters

• swarm (pyswarms.backend.swarms.Swarm) – a Swarm instance

• bounds (tuple of np.ndarray or list (default is None)) – a tuple of size 2 where
the first entry is the minimum bound while the second entry is the maximum bound.
Each array must be of shape (dimensions,).

• bh (a BoundaryHandler instance) –

Returns New position-matrix

Return type numpy.ndarray

compute_velocity(swarm, clamp=None, vh=<pyswarms.backend.handlers.VelocityHandler
object>, bounds=None)

Compute the velocity matrix

This method updates the velocity matrix using the best and current positions of the swarm. The
velocity matrix is computed using the cognitive and social terms of the swarm.

A sample usage can be seen with the following:

import pyswarms.backend as P
from pyswarms.backend.swarm import Swarm
from pyswarms.backend.handlers import VelocityHandler
from pyswarms.backend.topology import Pyramid

my_swarm = P.create_swarm(n_particles, dimensions)
my_topology = Pyramid(static=False)
my_vh = VelocityHandler(strategy="zero")

for i in range(iters):
Inside the for-loop
my_swarm.velocity = my_topology.update_velocity(my_swarm, clamp, my_vh,
bounds=bounds)

Parameters

• swarm (pyswarms.backend.swarms.Swarm) – a Swarm instance

52 Chapter 1. Launching pad

http://www.qhull.org/html/qh-optq.htm

PySwarms Documentation, Release 1.0.2

• clamp (tuple of floats (default is None)) – a tuple of size 2 where the first entry is
the minimum velocity and the second entry is the maximum velocity. It sets the limits
for velocity clamping.

• vh (pyswarms.backend.handlers.VelocityHandler) – a VelocityHan-
dler instance

• bounds (tuple of np.ndarray or list (default is None)) – a tuple of size 2 where
the first entry is the minimum bound while the second entry is the maximum bound.
Each array must be of shape (dimensions,).

Returns Updated velocity matrix

Return type numpy.ndarray

pyswarms.backend.topology.random module

A Random Network Topology

This class implements a random topology. All particles are connected in a random fashion.

class pyswarms.backend.topology.random.Random(static=False)
Bases: pyswarms.backend.topology.base.Topology

__init__(static=False)
Initializes the class

Parameters static (bool (Default is False)) – a boolean that decides whether the topol-
ogy is static or dynamic

compute_gbest(swarm, k, **kwargs)
Update the global best using a random neighborhood approach

This uses random class from numpy to give every particle k randomly distributed, non-equal neigh-
bors. The resulting topology is a connected graph. The algorithm to obtain the neighbors was adapted
from [TSWJ2013].

[TSWJ2013] Qingjian Ni and Jianming Deng, “A New Logistic Dynamic Particle Swarm Optimization
Algorithm Based on Random Topology,” The Scientific World Journal, vol. 2013, Article ID 409167,
8 pages, 2013. https://doi.org/10.1155/2013/409167.

Parameters

• swarm (pyswarms.backend.swarms.Swarm) – a Swarm instance

• k (int) – number of neighbors to be considered. Must be a positive integer less than
n_particles-1

Returns

• numpy.ndarray – Best position of shape (n_dimensions,)

• float – Best cost

compute_position(swarm, bounds=None, bh=<pyswarms.backend.handlers.BoundaryHandler
object>)

Update the position matrix

This method updates the position matrix given the current position and the velocity. If bounded, it
waives updating the position.

Parameters

• swarm (pyswarms.backend.swarms.Swarm) – a Swarm instance

• bounds (tuple of np.ndarray or list (default is None)) – a tuple of size 2 where
the first entry is the minimum bound while the second entry is the maximum bound.
Each array must be of shape (dimensions,).

1.12. Backend 53

https://doi.org/10.1155/2013/409167

PySwarms Documentation, Release 1.0.2

• bh (pyswarms.backend.handlers.BoundaryHandler) – a BoundaryHan-
dler instance

Returns New position-matrix

Return type numpy.ndarray

compute_velocity(swarm, clamp=None, vh=<pyswarms.backend.handlers.VelocityHandler
object>, bounds=None)

Compute the velocity matrix

This method updates the velocity matrix using the best and current positions of the swarm. The
velocity matrix is computed using the cognitive and social terms of the swarm.

A sample usage can be seen with the following:

import pyswarms.backend as P
from pyswarms.backend.swarm import Swarm
from pyswarms.backend.handlers import VelocityHandler
from pyswarms.backend.topology import Random

my_swarm = P.create_swarm(n_particles, dimensions)
my_topology = Random(static=False)
my_vh = VelocityHandler(strategy="zero")

for i in range(iters):
Inside the for-loop
my_swarm.velocity = my_topology.update_velocity(my_swarm, clamp, my_vh,
bounds)

Parameters

• swarm (pyswarms.backend.swarms.Swarm) – a Swarm instance

• clamp (tuple of floats (default is None)) – a tuple of size 2 where the first entry is
the minimum velocity and the second entry is the maximum velocity. It sets the limits
for velocity clamping.

• vh (pyswarms.backend.handlers.VelocityHandler) – a VelocityHan-
dler instance

• bounds (tuple of np.ndarray or list (default is None)) – a tuple of size 2 where
the first entry is the minimum bound while the second entry is the maximum bound.
Each array must be of shape (dimensions,).

Returns Updated velocity matrix

Return type numpy.ndarray

1.12.4 pyswarms.swarms package

This package contains the Swarm class for creating your own swarm implementation. The class acts as a Data-
Class, holding information on the particles you have generated throughout each timestep. It offers a pre-built and
flexible way of building your own swarm.

54 Chapter 1. Launching pad

PySwarms Documentation, Release 1.0.2

pyswarms.swarms class

class pyswarms.backend.swarms.Swarm(position: numpy.ndarray, velocity: numpy.ndarray,
n_particles: int = NOTHING, dimensions: int
= NOTHING, options: dict = {}, pbest_pos:
numpy.ndarray = NOTHING, best_pos:
numpy.ndarray = array([], dtype=float64),
pbest_cost: numpy.ndarray = array([],
dtype=float64), best_cost: float = inf, current_cost:
numpy.ndarray = array([], dtype=float64))

A Swarm Class

This class offers a generic swarm that can be used in most use-cases such as single-objective optimization,
etc. It contains various attributes that are commonly-used in most swarm implementations.

To initialize this class, simply supply values for the position and velocity matrix. The other attributes are
automatically filled. If you want to initialize random values, take a look at:

• pyswarms.backend.generators.generate_swarm(): for generating positions randomly.

• pyswarms.backend.generators.generate_velocity(): for generating velocities ran-
domly.

If your swarm requires additional parameters (say c1, c2, and w in gbest PSO), simply pass them to the
options dictionary.

As an example, say we want to create a swarm by generating particles randomly. We can use the helper
methods above to do our job:

import pyswarms.backend as P
from pyswarms.backend.swarms import Swarm

Let's generate a 10-particle swarm with 10 dimensions
init_positions = P.generate_swarm(n_particles=10, dimensions=10)
init_velocities = P.generate_velocity(n_particles=10, dimensions=10)
Say, particle behavior is governed by parameters `foo` and `bar`
my_options = {'foo': 0.4, 'bar': 0.6}
Initialize the swarm
my_swarm = Swarm(position=init_positions, velocity=init_velocities, options=my_
→˓options)

From there, you can now use all the methods in pyswarms.backend. Of course, the process above has
been abstracted by the method pyswarms.backend.generators.create_swarm() so you don’t
have to write the whole thing down.

position
numpy.ndarray – position-matrix at a given timestep of shape (n_particles, dimensions)

velocity
numpy.ndarray – velocity-matrix at a given timestep of shape (n_particles, dimensions)

n_particles
int (default is position.shape[0]) – number of particles in a swarm.

dimensions
int (default is position.shape[1]) – number of dimensions in a swarm.

options
dict (default is empty dictionary) – various options that govern a swarm’s behavior.

pbest_pos
numpy.ndarray (default is None) – personal best positions of each particle of shape
(n_particles, dimensions)

best_pos
numpy.ndarray (default is empty array) – best position found by the swarm of shape (dimensions,

1.12. Backend 55

PySwarms Documentation, Release 1.0.2

) for the Star`topology and :code:`(dimensions, particles) for the other topolo-
gies

pbest_cost
numpy.ndarray (default is empty array) – personal best costs of each particle of shape
(n_particles,)

best_cost
float (default is np.inf) – best cost found by the swarm

current_cost
numpy.ndarray (default is empty array) – the current cost found by the swarm of shape
(n_particles, dimensions)

1.13 Base Classes

The base classes are inherited by various PSO implementations throughout the library. It supports a simple skele-
ton to construct a customized PSO algorithm.

1.13.1 pyswarms.base package

The pyswarms.base module implements base swarm classes to implement variants of particle swarm opti-
mization.

pyswarms.base module

Base class for single-objective Particle Swarm Optimization implementations.

All methods here are abstract and raise a NotImplementedError when not used. When defining your own
swarm implementation, create another class,

>>> class MySwarm(SwarmBase):
>>> def __init__(self):
>>> super(MySwarm, self).__init__()

and define all the necessary methods needed.

As a guide, check the global best and local best implementations in this package.

Note: Regarding options, it is highly recommended to include parameters used in position and velocity updates
as keyword arguments. For parameters that affect the topology of the swarm, it may be much better to have them
as positional arguments.

See also:

pyswarms.single.global_best global-best PSO implementation

pyswarms.single.local_best local-best PSO implementation

pyswarms.single.general_optimizer a more general PSO implementation with a custom topology

class pyswarms.base.base_single.SwarmOptimizer(n_particles, dimensions, op-
tions, bounds=None, veloc-
ity_clamp=None, center=1.0,
ftol=-inf, init_pos=None)

Bases: abc.ABC

56 Chapter 1. Launching pad

PySwarms Documentation, Release 1.0.2

__init__(n_particles, dimensions, options, bounds=None, velocity_clamp=None, center=1.0,
ftol=-inf, init_pos=None)

Initialize the swarm

Creates a Swarm class depending on the values initialized

n_particles
int – number of particles in the swarm.

dimensions
int – number of dimensions in the space.

options
dict with keys {'c1', 'c2', 'w'} – a dictionary containing the parameters for the specific
optimization technique

• c1 [float] cognitive parameter
• c2 [float] social parameter
• w [float] inertia parameter

bounds
tuple of np.ndarray (default is None) – a tuple of size 2 where the first entry is the min-
imum bound while the second entry is the maximum bound. Each array must be of shape
(dimensions,).

velocity_clamp
tuple (default is None) – a tuple of size 2 where the first entry is the minimum velocity and the
second entry is the maximum velocity. It sets the limits for velocity clamping.

center
list (default is None) – an array of size dimensions

ftol
float – relative error in objective_func(best_pos) acceptable for convergence

_abc_impl = <_abc_data object>

_populate_history(hist)
Populate all history lists

The cost_history, mean_pbest_history, and neighborhood_best is expected to have
a shape of (iters,),on the other hand, the pos_history and velocity_history are ex-
pected to have a shape of (iters, n_particles, dimensions)

Parameters hist (namedtuple) – Must be of the same type as self.ToHistory

optimize(objective_func, iters, n_processes=None, **kwargs)
Optimize the swarm for a number of iterations

Performs the optimization to evaluate the objective function objective_func for a number of
iterations iter.

Parameters

• objective_func (function) – objective function to be evaluated

• iters (int) – number of iterations

• n_processes (int) – number of processes to use for parallel particle evaluation
(default: None = no parallelization)

• kwargs (dict) – arguments for objective function

Raises NotImplementedError – When this method is not implemented.

reset()
Reset the attributes of the optimizer

All variables/atributes that will be re-initialized when this method is defined here. Note that this
method can be called twice: (1) during initialization, and (2) when this is called from an instance.

1.13. Base Classes 57

PySwarms Documentation, Release 1.0.2

It is good practice to keep the number of resettable attributes at a minimum. This is to prevent spam-
ming the same object instance with various swarm definitions.

Normally, swarm definitions are as atomic as possible, where each type of swarm is contained in its
own instance. Thus, the following attributes are the only ones recommended to be resettable:

• Swarm position matrix (self.pos)

• Velocity matrix (self.pos)

• Best scores and positions (gbest_cost, gbest_pos, etc.)

Otherwise, consider using positional arguments.

Base class for single-objective discrete Particle Swarm Optimization implementations.

All methods here are abstract and raises a NotImplementedError when not used. When defining your own
swarm implementation, create another class,

>>> class MySwarm(DiscreteSwarmOptimizer):
>>> def __init__(self):
>>> super(MySwarm, self).__init__()

and define all the necessary methods needed.

As a guide, check the discrete PSO implementations in this package.

Note: Regarding options, it is highly recommended to include parameters used in position and velocity updates
as keyword arguments. For parameters that affect the topology of the swarm, it may be much better to have them
as positional arguments.

See also:

pyswarms.discrete.binary binary PSO implementation

class pyswarms.base.base_discrete.DiscreteSwarmOptimizer(n_particles, di-
mensions, binary,
options, veloc-
ity_clamp=None,
init_pos=None,
ftol=-inf)

Bases: abc.ABC

__init__(n_particles, dimensions, binary, options, velocity_clamp=None, init_pos=None, ftol=-
inf)

Initialize the swarm.

Creates a numpy.ndarray of positions depending on the number of particles needed and the number
of dimensions. The initial positions of the particles depends on the argument binary, which governs
if a binary matrix will be produced.

n_particles
int – number of particles in the swarm.

dimensions
int – number of dimensions in the space.

binary
boolean – a trigger to generate a binary matrix for the swarm’s initial positions. When passed
with a False value, random integers from 0 to dimensions are generated.

options
dict with keys {'c1', 'c2', 'w'} – a dictionary containing the parameters for the specific
optimization technique

• c1 [float] cognitive parameter
• c2 [float] social parameter

58 Chapter 1. Launching pad

PySwarms Documentation, Release 1.0.2

• w [float] inertia parameter

velocity_clamp
tuple (default is None) – a tuple of size 2 where the first entry is the minimum velocity and the
second entry is the maximum velocity. It sets the limits for velocity clamping.

options
dict – a dictionary containing the parameters for a specific optimization technique

_abc_impl = <_abc_data object>

_populate_history(hist)
Populate all history lists

The cost_history, mean_pbest_history, and neighborhood_best is expected to have
a shape of (iters,),on the other hand, the pos_history and velocity_history are ex-
pected to have a shape of (iters, n_particles, dimensions)

Parameters hist (namedtuple) – Must be of the same type as self.ToHistory

optimize(objective_func, iters, n_processes=None, **kwargs)
Optimize the swarm for a number of iterations

Performs the optimization to evaluate the objective function objective_func for a number of
iterations iter.

Parameters

• objective_func (function) – objective function to be evaluated

• iters (int) – number of iterations

• n_processes (int) – number of processes to use for parallel particle evaluation
(default: None = no parallelization)

• kwargs (dict) – arguments for objective function

Raises NotImplementedError – When this method is not implemented.

reset()
Reset the attributes of the optimizer

All variables/atributes that will be re-initialized when this method is defined here. Note that this
method can be called twice: (1) during initialization, and (2) when this is called from an instance.

It is good practice to keep the number of resettable attributes at a minimum. This is to prevent spam-
ming the same object instance with various swarm definitions.

Normally, swarm definitions are as atomic as possible, where each type of swarm is contained in its
own instance. Thus, the following attributes are the only ones recommended to be resettable:

• Swarm position matrix (self.pos)

• Velocity matrix (self.pos)

• Best scores and positions (gbest_cost, gbest_pos, etc.)

Otherwise, consider using positional arguments.

1.14 Optimizers

Off-the-shelf implementations of standard algorithms. Includes classics such as global-best and local-best. Useful
for quick-and-easy optimization problems.

1.14. Optimizers 59

PySwarms Documentation, Release 1.0.2

1.14.1 pyswarms.single package

The pyswarms.single module implements various techniques in continuous single-objective optimization.
These require only one objective function that can be optimized in a continuous space.

Note: PSO algorithms scale with the search space. This means that, by using larger boundaries, the final results
are getting larger as well.

Note: Please keep in mind that Python has a biggest float number. So using large boundaries in combination with
exponentiation or multiplication can lead to an OverflowError.

pyswarms.single.global_best module

A Global-best Particle Swarm Optimization (gbest PSO) algorithm.

It takes a set of candidate solutions, and tries to find the best solution using a position-velocity update method.
Uses a star-topology where each particle is attracted to the best performing particle.

The position update can be defined as:

𝑥𝑖(𝑡+ 1) = 𝑥𝑖(𝑡) + 𝑣𝑖(𝑡+ 1)

Where the position at the current timestep 𝑡 is updated using the computed velocity at 𝑡 + 1. Furthermore, the
velocity update is defined as:

𝑣𝑖𝑗(𝑡+ 1) = 𝑚 * 𝑣𝑖𝑗(𝑡) + 𝑐1𝑟1𝑗(𝑡)[𝑦𝑖𝑗(𝑡)𝑥𝑖𝑗(𝑡)] + 𝑐2𝑟2𝑗(𝑡)[𝑦𝑗(𝑡)𝑥𝑖𝑗(𝑡)]

Here, 𝑐1 and 𝑐2 are the cognitive and social parameters respectively. They control the particle’s behavior given
two choices: (1) to follow its personal best or (2) follow the swarm’s global best position. Overall, this dictates if
the swarm is explorative or exploitative in nature. In addition, a parameter 𝑤 controls the inertia of the swarm’s
movement.

An example usage is as follows:

import pyswarms as ps
from pyswarms.utils.functions import single_obj as fx

Set-up hyperparameters
options = {'c1': 0.5, 'c2': 0.3, 'w':0.9}

Call instance of GlobalBestPSO
optimizer = ps.single.GlobalBestPSO(n_particles=10, dimensions=2,

options=options)

Perform optimization
stats = optimizer.optimize(fx.sphere, iters=100)

This algorithm was adapted from the earlier works of J. Kennedy and R.C. Eberhart in Particle Swarm Optimiza-
tion [IJCNN1995].

class pyswarms.single.global_best.GlobalBestPSO(n_particles, dimensions,
options, bounds=None,
bh_strategy=’periodic’,
velocity_clamp=None,
vh_strategy=’unmodified’, cen-
ter=1.0, ftol=-inf, init_pos=None)

Bases: pyswarms.base.base_single.SwarmOptimizer

60 Chapter 1. Launching pad

PySwarms Documentation, Release 1.0.2

__init__(n_particles, dimensions, options, bounds=None, bh_strategy=’periodic’, veloc-
ity_clamp=None, vh_strategy=’unmodified’, center=1.0, ftol=-inf, init_pos=None)

Initialize the swarm

n_particles
int – number of particles in the swarm.

dimensions
int – number of dimensions in the space.

options
dict with keys {'c1', 'c2', 'w'} – a dictionary containing the parameters for the specific
optimization technique.

• c1 [float] cognitive parameter
• c2 [float] social parameter
• w [float] inertia parameter

bounds
tuple of np.ndarray (default is None) – a tuple of size 2 where the first entry is the min-
imum bound while the second entry is the maximum bound. Each array must be of shape
(dimensions,).

bh_strategy
String – a strategy for the handling of out-of-bounds particles.

velocity_clamp
tuple (default is None) – a tuple of size 2 where the first entry is the minimum velocity and the
second entry is the maximum velocity. It sets the limits for velocity clamping.

vh_strategy
String – a strategy for the handling of the velocity of out-of-bounds particles.

center
list (default is None) – an array of size dimensions

ftol
float – relative error in objective_func(best_pos) acceptable for convergence

init_pos
numpy.ndarray (default is None) – option to explicitly set the particles’ initial positions. Set
to None if you wish to generate the particles randomly.

optimize(objective_func, iters, n_processes=None, **kwargs)
Optimize the swarm for a number of iterations

Performs the optimization to evaluate the objective function f for a number of iterations iter.

Parameters

• objective_func (function) – objective function to be evaluated

• iters (int) – number of iterations

• n_processes (int) – number of processes to use for parallel particle evaluation
(default: None = no parallelization)

• kwargs (dict) – arguments for the objective function

Returns the global best cost and the global best position.

Return type tuple

pyswarms.single.local_best module

A Local-best Particle Swarm Optimization (lbest PSO) algorithm.

1.14. Optimizers 61

PySwarms Documentation, Release 1.0.2

Similar to global-best PSO, it takes a set of candidate solutions, and finds the best solution using a position-
velocity update method. However, it uses a ring topology, thus making the particles attracted to its corresponding
neighborhood.

The position update can be defined as:

𝑥𝑖(𝑡+ 1) = 𝑥𝑖(𝑡) + 𝑣𝑖(𝑡+ 1)

Where the position at the current timestep 𝑡 is updated using the computed velocity at 𝑡 + 1. Furthermore, the
velocity update is defined as:

𝑣𝑖𝑗(𝑡+ 1) = 𝑚 * 𝑣𝑖𝑗(𝑡) + 𝑐1𝑟1𝑗(𝑡)[𝑦𝑖𝑗(𝑡)𝑥𝑖𝑗(𝑡)] + 𝑐2𝑟2𝑗(𝑡)[𝑦𝑗(𝑡)𝑥𝑖𝑗(𝑡)]

However, in local-best PSO, a particle doesn’t compare itself to the overall performance of the swarm. Instead,
it looks at the performance of its nearest-neighbours, and compares itself with them. In general, this kind of
topology takes much more time to converge, but has a more powerful explorative feature.

In this implementation, a neighbor is selected via a k-D tree imported from scipy. Distance are computed with
either the L1 or L2 distance. The nearest-neighbours are then queried from this k-D tree. They are computed for
every iteration.

An example usage is as follows:

import pyswarms as ps
from pyswarms.utils.functions import single_obj as fx

Set-up hyperparameters
options = {'c1': 0.5, 'c2': 0.3, 'w': 0.9, 'k': 3, 'p': 2}

Call instance of LBestPSO with a neighbour-size of 3 determined by
the L2 (p=2) distance.
optimizer = ps.single.LocalBestPSO(n_particles=10, dimensions=2,

options=options)

Perform optimization
stats = optimizer.optimize(fx.sphere, iters=100)

This algorithm was adapted from one of the earlier works of J. Kennedy and R.C. Eberhart in Particle Swarm
Optimization [IJCNN1995] [MHS1995]

class pyswarms.single.local_best.LocalBestPSO(n_particles, dimensions,
options, bounds=None,
bh_strategy=’periodic’,
velocity_clamp=None,
vh_strategy=’unmodified’, cen-
ter=1.0, ftol=-inf, init_pos=None,
static=False)

Bases: pyswarms.base.base_single.SwarmOptimizer

__init__(n_particles, dimensions, options, bounds=None, bh_strategy=’periodic’, veloc-
ity_clamp=None, vh_strategy=’unmodified’, center=1.0, ftol=-inf, init_pos=None,
static=False)

Initialize the swarm

n_particles
int – number of particles in the swarm.

dimensions
int – number of dimensions in the space.

bounds
tuple of np.ndarray, optional (default is None) – a tuple of size 2 where the first entry is the
minimum bound while the second entry is the maximum bound. Each array must be of shape
(dimensions,).

62 Chapter 1. Launching pad

PySwarms Documentation, Release 1.0.2

bh_strategy
String – a strategy for the handling of out-of-bounds particles.

velocity_clamp
tuple (default is (0,1)) – a tuple of size 2 where the first entry is the minimum velocity and the
second entry is the maximum velocity. It sets the limits for velocity clamping.

vh_strategy
String – a strategy for the handling of the velocity of out-of-bounds particles.

center
list (default is None) – an array of size dimensions

ftol
float – relative error in objective_func(best_pos) acceptable for convergence

options
dict with keys {'c1', 'c2', 'w', 'k', 'p'} – a dictionary containing the parameters
for the specific optimization technique

• c1 [float] cognitive parameter
• c2 [float] social parameter
• w [float] inertia parameter
• k [int] number of neighbors to be considered. Must be a positive integer less than

n_particles
• p: int {1,2} the Minkowski p-norm to use. 1 is the sum-of-absolute values (or L1 distance)

while 2 is the Euclidean (or L2) distance.

init_pos
numpy.ndarray (default is None) – option to explicitly set the particles’ initial positions. Set
to None if you wish to generate the particles randomly.

static
bool (Default is False) – a boolean that decides whether the Ring topology used is static or
dynamic

_abc_impl = <_abc_data object>

optimize(objective_func, iters, n_processes=None, **kwargs)
Optimize the swarm for a number of iterations

Performs the optimization to evaluate the objective function f for a number of iterations iter.

Parameters

• objective_func (function) – objective function to be evaluated

• iters (int) – number of iterations

• n_processes (int) – number of processes to use for parallel particle evaluation
(default: None = no parallelization)

• kwargs (dict) – arguments for the objective function

Returns the local best cost and the local best position among the swarm.

Return type tuple

pyswarms.single.general_optimizer module

A general Particle Swarm Optimization (general PSO) algorithm.

It takes a set of candidate solutions, and tries to find the best solution using a position-velocity update method.
Uses a user specified topology.

The position update can be defined as:

𝑥𝑖(𝑡+ 1) = 𝑥𝑖(𝑡) + 𝑣𝑖(𝑡+ 1)

1.14. Optimizers 63

PySwarms Documentation, Release 1.0.2

Where the position at the current timestep 𝑡 is updated using the computed velocity at 𝑡 + 1. Furthermore, the
velocity update is defined as:

𝑣𝑖𝑗(𝑡+ 1) = 𝑚 * 𝑣𝑖𝑗(𝑡) + 𝑐1𝑟1𝑗(𝑡)[𝑦𝑖𝑗(𝑡)𝑥𝑖𝑗(𝑡)] + 𝑐2𝑟2𝑗(𝑡)[𝑦𝑗(𝑡)𝑥𝑖𝑗(𝑡)]

Here, 𝑐1 and 𝑐2 are the cognitive and social parameters respectively. They control the particle’s behavior given
two choices: (1) to follow its personal best or (2) follow the swarm’s global best position. Overall, this dictates if
the swarm is explorative or exploitative in nature. In addition, a parameter 𝑤 controls the inertia of the swarm’s
movement.

An example usage is as follows:

import pyswarms as ps
from pyswarms.backend.topology import Pyramid
from pyswarms.utils.functions import single_obj as fx

Set-up hyperparameters and topology
options = {'c1': 0.5, 'c2': 0.3, 'w':0.9}
my_topology = Pyramid(static=False)

Call instance of GlobalBestPSO
optimizer = ps.single.GeneralOptimizerPSO(n_particles=10, dimensions=2,

options=options, topology=my_topology)

Perform optimization
stats = optimizer.optimize(fx.sphere, iters=100)

This algorithm was adapted from the earlier works of J. Kennedy and R.C. Eberhart in Particle Swarm Optimiza-
tion [IJCNN1995].

class pyswarms.single.general_optimizer.GeneralOptimizerPSO(n_particles,
dimensions, op-
tions, topology,
bounds=None,
bh_strategy=’periodic’,
veloc-
ity_clamp=None,
vh_strategy=’unmodified’,
center=1.0,
ftol=-inf,
init_pos=None)

Bases: pyswarms.base.base_single.SwarmOptimizer

__init__(n_particles, dimensions, options, topology, bounds=None, bh_strategy=’periodic’, ve-
locity_clamp=None, vh_strategy=’unmodified’, center=1.0, ftol=-inf, init_pos=None)

Initialize the swarm

n_particles
int – number of particles in the swarm.

dimensions
int – number of dimensions in the space.

options
dict with keys {'c1', 'c2', 'w'} or {'c1', -- 'c2', 'w', 'k', 'p'} a dictio-
nary containing the parameters for the specific optimization technique.

• c1 [float] cognitive parameter
• c2 [float] social parameter
• w [float] inertia parameter

if used with the Ring, VonNeumann or Random topology the additional parameter k
must be included * k : int

number of neighbors to be considered. Must be a positive integer less than
n_particles

64 Chapter 1. Launching pad

PySwarms Documentation, Release 1.0.2

if used with the Ring topology the additional parameters k and p must be included * p:
int {1,2}

the Minkowski p-norm to use. 1 is the sum-of-absolute values (or L1 distance) while
2 is the Euclidean (or L2) distance.

if used with the VonNeumann topology the additional parameters p and r must be in-
cluded * r: int

the range of the VonNeumann topology. This is used to determine the number of
neighbours in the topology.

topology
pyswarms.backend.topology.Topology – a Topology object that defines the topology to use in
the optimization process. The currently available topologies are:

• Star All particles are connected
• Ring (static and dynamic) Particles are connected to the k nearest neighbours
• VonNeumann Particles are connected in a VonNeumann topology
• Pyramid (static and dynamic) Particles are connected in N-dimensional simplices
• Random (static and dynamic) Particles are connected to k random particles

Static variants of the topologies remain with the same neighbours over the course of the
optimization. Dynamic variants calculate new neighbours every time step.

bounds
tuple of np.ndarray (default is None) – a tuple of size 2 where the first entry is the min-
imum bound while the second entry is the maximum bound. Each array must be of shape
(dimensions,).

bh_strategy
String – a strategy for the handling of out-of-bounds particles.

velocity_clamp
tuple (default is None) – a tuple of size 2 where the first entry is the minimum velocity and the
second entry is the maximum velocity. It sets the limits for velocity clamping.

vh_strategy
String – a strategy for the handling of the velocity of out-of-bounds particles.

center
list (default is None) – an array of size dimensions

ftol
float – relative error in objective_func(best_pos) acceptable for convergence

init_pos
numpy.ndarray (default is None) – option to explicitly set the particles’ initial positions. Set
to None if you wish to generate the particles randomly.

_abc_impl = <_abc_data object>

optimize(objective_func, iters, n_processes=None, **kwargs)
Optimize the swarm for a number of iterations

Performs the optimization to evaluate the objective function f for a number of iterations iter.

Parameters

• objective_func (function) – objective function to be evaluated

• iters (int) – number of iterations

• n_processes (int) – number of processes to use for parallel particle evaluation
(default: None = no parallelization)

• kwargs (dict) – arguments for the objective function

Returns the global best cost and the global best position.

Return type tuple

1.14. Optimizers 65

PySwarms Documentation, Release 1.0.2

1.14.2 pyswarms.discrete package

The pyswarms.discrete module implements various techniques in discrete optimization. These are tech-
niques that can be applied to a discrete search-space.

pyswarms.discrete.binary module

A Binary Particle Swarm Optimization (binary PSO) algorithm.

It takes a set of candidate solutions, and tries to find the best solution using a position-velocity update method. Un-
like pyswarms.single.gb and pyswarms.single.lb, this technique is often applied to discrete binary
problems such as job-shop scheduling, sequencing, and the like.

The update rule for the velocity is still similar, as shown in the proceeding equation:

𝑣𝑖𝑗(𝑡+ 1) = 𝑚 * 𝑣𝑖𝑗(𝑡) + 𝑐1𝑟1𝑗(𝑡)[𝑦𝑖𝑗(𝑡)𝑥𝑖𝑗(𝑡)] + 𝑐2𝑟2𝑗(𝑡)[𝑦𝑗(𝑡)𝑥𝑖𝑗(𝑡)]

For the velocity update rule, a particle compares its current position with respect to its neighbours. The nearest
neighbours are being determined by a kD-tree given a distance metric, similar to local-best PSO. The neighbours
are computed for every iteration. However, this whole behavior can be modified into a global-best PSO by chang-
ing the nearest neighbours equal to the number of particles in the swarm. In this case, all particles see each other,
and thus a global best particle can be established.

In addition, one notable change for binary PSO is that the position update rule is now decided upon by the
following case expression:

𝑋𝑖𝑗(𝑡+ 1) =

{︂
0, if rand() ≥ 𝑆(𝑣𝑖𝑗(𝑡+ 1))
1, if rand() < 𝑆(𝑣𝑖𝑗(𝑡+ 1))

}︂
Where the function 𝑆(𝑥) is the sigmoid function defined as:

𝑆(𝑥) =
1

1 + 𝑒−𝑥

This enables the algorithm to output binary positions rather than a stream of continuous values as seen in global-
best or local-best PSO.

This algorithm was adapted from the standard Binary PSO work of J. Kennedy and R.C. Eberhart in Particle
Swarm Optimization [SMC1997].

class pyswarms.discrete.binary.BinaryPSO(n_particles, dimensions, options,
init_pos=None, velocity_clamp=None,
vh_strategy=’unmodified’, ftol=-inf)

Bases: pyswarms.base.base_discrete.DiscreteSwarmOptimizer

__init__(n_particles, dimensions, options, init_pos=None, velocity_clamp=None,
vh_strategy=’unmodified’, ftol=-inf)

Initialize the swarm

n_particles
int – number of particles in the swarm.

dimensions
int – number of dimensions in the space.

options
dict with keys {'c1', 'c2', 'k', 'p'} – a dictionary containing the parameters for the
specific optimization technique

• c1 [float] cognitive parameter
• c2 [float] social parameter
• w [float] inertia parameter
• k [int] number of neighbors to be considered. Must be a positive integer less than

n_particles

66 Chapter 1. Launching pad

PySwarms Documentation, Release 1.0.2

• p: int {1,2} the Minkowski p-norm to use. 1 is the sum-of-absolute values (or L1 distance)
while 2 is the Euclidean (or L2) distance.

init_pos
numpy.ndarray (default is None) – option to explicitly set the particles’ initial positions. Set
to None if you wish to generate the particles randomly.

velocity_clamp
tuple (default is None) – a tuple of size 2 where the first entry is the minimum velocity and the
second entry is the maximum velocity. It sets the limits for velocity clamping.

vh_strategy
String – a strategy for the handling of the velocity of out-of-bounds particles. Only the “unmodi-
fied” and the “adjust” strategies are allowed.

ftol
float – relative error in objective_func(best_pos) acceptable for convergence

optimize(objective_func, iters, n_processes=None, **kwargs)
Optimize the swarm for a number of iterations

Performs the optimization to evaluate the objective function f for a number of iterations iter.

Parameters

• objective_func (function) – objective function to be evaluated

• iters (int) – number of iterations

• n_processes (int) – number of processes to use for parallel particle evaluation
(default: None = no parallelization)

• kwargs (dict) – arguments for objective function

Returns the local best cost and the local best position among the swarm.

Return type tuple

1.15 Utilities

This includes various utilities to help in optimization. Some utilities include benchmark objective functions,
hyperparameter search, and plotting functionalities.

1.15.1 pyswarms.utils.decorators package

The pyswarms.decorators module implements a decorator that can be used to simplify the task of writing
the cost function for an optimization run. The decorator can be directly called by using @pyswarms.cost.

pyswarms.utils.decorators.cost(cost_func)
A decorator for the cost function

This decorator allows the creation of much simpler cost functions. Instead of writing a cost function that
returns a shape of (n_particles, 0) it enables the usage of shorter and simpler cost functions that
directly return the cost. A simple example might be:

The decorator expects your cost function to use a d-dimensional array (where d is the number of dimensions
for the optimization) as and argument.

Note: Some numpy functions return a np.ndarray with single values in it. Be aware of the fact that
without unpacking the value the optimizer will raise an exception.

1.15. Utilities 67

PySwarms Documentation, Release 1.0.2

Parameters cost_func (callable) – A callable object that can be used as cost function in
the optimization (must return a float or an int).

Returns The vectorized output for all particles as defined by cost_func

Return type callable

1.15.2 pyswarms.utils.functions package

The mod:pyswarms.utils.functions module implements various test functions for optimization.

pyswarms.utils.functions.single_obj module

single_obj.py: collection of single-objective functions

All objective functions obj_func() must accept a (numpy.ndarray) with shape (n_particles,
dimensions). Thus, each row represents a particle, and each column represents its position on a specific
dimension of the search-space.

In this context, obj_func() must return an array j of size (n_particles,) that contains all the computed
fitness for each particle.

Whenever you make changes to this file via an implementation of a new objective function, be sure to perform
unittesting in order to check if all functions implemented adheres to the design pattern stated above.

Function list: - Ackley’s, ackley - Beale, beale - Booth, booth - Bukin’s No 6, bukin6 - Cross-in-Tray, crossintray
- Easom, easom - Eggholder, eggholder - Goldstein, goldstein - Himmelblau’s, himmelblau - Holder Table, hold-
ertable - Levi, levi - Matyas, matyas - Rastrigin, rastrigin - Rosenbrock, rosenbrock - Schaffer No 2, schaffer2 -
Sphere, sphere - Three Hump Camel, threehump

pyswarms.utils.functions.single_obj.ackley(x)
Ackley’s objective function.

Has a global minimum of 0 at f(0,0,...,0) with a search domain of [-32, 32]

Parameters x (numpy.ndarray) – set of inputs of shape (n_particles,
dimensions)

Returns computed cost of size (n_particles,)

Return type numpy.ndarray

ValueError When the input is out of bounds with respect to the function domain

pyswarms.utils.functions.single_obj.beale(x)
Beale objective function.

Only takes two dimensions and has a global minimum of 0 at f([3,0.5]) Its domain is bounded between
[-4.5, 4.5]

Parameters x (numpy.ndarray) – set of inputs of shape (n_particles,
dimensions)

Returns computed cost of size (n_particles,)

Return type numpy.ndarray

Raises

• IndexError – When the input dimensions is greater than what the function allows

• ValueError – When the input is out of bounds with respect to the function domain

68 Chapter 1. Launching pad

PySwarms Documentation, Release 1.0.2

pyswarms.utils.functions.single_obj.booth(x)
Booth’s objective function.

Only takes two dimensions and has a global minimum of 0 at f([1,3]). Its domain is bounded between
[-10, 10]

Parameters x (numpy.ndarray) – set of inputs of shape (n_particles,
dimensions)

Returns computed cost of size (n_particles,)

Return type numpy.ndarray

Raises

• IndexError – When the input dimensions is greater than what the function allows

• ValueError – When the input is out of bounds with respect to the function domain

pyswarms.utils.functions.single_obj.bukin6(x)
Bukin N. 6 Objective Function

Only takes two dimensions and has a global minimum of 0 at f([-10,1]). Its coordinates are bounded
by:

• x[:,0] must be within [-15, -5]

• x[:,1] must be within [-3, 3]

Parameters x (numpy.ndarray) – set of inputs of shape (n_particles,
dimensions)

Returns computed cost of size (n_particles,)

Return type numpy.ndarray

Raises

• IndexError – When the input dimensions is greater than what the function allows

• ValueError – When the input is out of bounds with respect to the function domain

pyswarms.utils.functions.single_obj.crossintray(x)
Cross-in-tray objective function.

Only takes two dimensions and has a four equal global minimums of -2.06261 at f([1.34941,
-1.34941]), f([1.34941, 1.34941]), f([-1.34941, 1.34941]), and f([-1.
34941, -1.34941]).

Its coordinates are bounded within [-10,10].

Best visualized in the full domain and a range of [-2.0, -0.5].

Parameters x (numpy.ndarray) – set of inputs of shape (n_particles,
dimensions)

Returns computed cost of size (n_particles,)

Return type numpy.ndarray

Raises

• IndexError – When the input dimensions is greater than what the function allows

• ValueError – When the input is out of bounds with respect to the function domain

pyswarms.utils.functions.single_obj.easom(x)
Easom objective function.

Only takes two dimensions and has a global minimum of -1 at f([pi, pi]). Its coordinates are bounded
within [-100,100].

1.15. Utilities 69

PySwarms Documentation, Release 1.0.2

Best visualized in the domain of [-5, 5] and a range of [-1, 0.2].

Parameters x (numpy.ndarray) – set of inputs of shape (n_particles,
dimensions)

Returns computed cost of size (n_particles,)

Return type numpy.ndarray

Raises

• IndexError – When the input dimensions is greater than what the function allows

• ValueError – When the input is out of bounds with respect to the function domain

pyswarms.utils.functions.single_obj.eggholder(x)
Eggholder objective function.

Only takes two dimensions and has a global minimum of -959.6407 at f([512, 404.3219]). Its
coordinates are bounded within [-512, 512].

Best visualized in the full domain and a range of [-1000, 1000].

Parameters x (numpy.ndarray) – set of inputs of shape (n_particles,
dimensions)

Returns computed cost of size (n_particles,)

Return type numpy.ndarray

Raises

• IndexError – When the input dimensions is greater than what the function allows

• ValueError – When the input is out of bounds with respect to the function domain

pyswarms.utils.functions.single_obj.goldstein(x)
Goldstein-Price’s objective function.

Only takes two dimensions and has a global minimum at f([0,-1]). Its domain is bounded between
[-2, 2]

Best visualized in the domain of [-1.3,1.3] and range [-1,8000]

Parameters x (numpy.ndarray) – set of inputs of shape (n_particles,
dimensions)

Returns computed cost of size (n_particles,)

Return type numpy.ndarray

Raises

• IndexError – When the input dimensions is greater than what the function allows

• ValueError – When the input is out of bounds with respect to the function domain

pyswarms.utils.functions.single_obj.himmelblau(x)
Himmelblau’s objective function

Only takes two dimensions and has a four equal global minimums of zero at f([3.0,2.0]),
f([-2.805118,3.131312]), f([-3.779310,-3.283186]), and f([3.584428,-1.
848126]).

Its coordinates are bounded within [-5,5].

Best visualized with the full domain and a range of [0,1000]

Parameters x (numpy.ndarray) – set of inputs of shape (n_particles,
dimensions)

Returns computed cost of size (n_particles,)

Return type numpy.ndarray

70 Chapter 1. Launching pad

PySwarms Documentation, Release 1.0.2

Raises

• IndexError – When the input dimensions is greater than what the function allows

• ValueError – When the input is out of bounds with respect to the function domain

pyswarms.utils.functions.single_obj.holdertable(x)
Holder Table objective function

Only takes two dimensions and has a four equal global minimums of -19.2085 at f([8.05502,
9.66459]), f([-8.05502, 9.66459]), f([8.05502, -9.66459]), and f([-8.
05502, -9.66459]).

Its coordinates are bounded within [-10, 10].

Best visualized with the full domain and a range of [-20, 0]

Parameters x (numpy.ndarray) – set of inputs of shape (n_particles,
dimensions)

Returns computed cost of size (n_particles,)

Return type numpy.ndarray

Raises

• IndexError – When the input dimensions is greater than what the function allows

• ValueError – When the input is out of bounds with respect to the function domain

pyswarms.utils.functions.single_obj.levi(x)
Levi objective function

Only takes two dimensions and has a global minimum at f([1,1]). Its coordinates are bounded within
[-10,10].

Parameters x (numpy.ndarray) – set of inputs of shape (n_particles,
dimensions)

Returns computed cost of size (n_particles,)

Return type numpy.ndarray

Raises

• IndexError – When the input dimensions is greater than what the function allows

• ValueError – When the input is out of bounds with respect to the function domain

pyswarms.utils.functions.single_obj.matyas(x)
Matyas objective function

Only takes two dimensions and has a global minimum at f([0,0]). Its coordinates are bounded within
[-10,10].

Parameters x (numpy.ndarray) – set of inputs of shape (n_particles,
dimensions)

Returns

Return type numpy.ndarray

pyswarms.utils.functions.single_obj.rastrigin(x)
Rastrigin objective function.

Has a global minimum at f(0,0,...,0) with a search domain of [-5.12, 5.12]

Parameters x (numpy.ndarray) – set of inputs of shape (n_particles,
dimensions)

Returns computed cost of size (n_particles,)

Return type numpy.ndarray

1.15. Utilities 71

PySwarms Documentation, Release 1.0.2

Raises ValueError – When the input is out of bounds with respect to the function domain

pyswarms.utils.functions.single_obj.rosenbrock(x)
Rosenbrock objective function.

Also known as the Rosenbrock’s valley or Rosenbrock’s banana function. Has a global minimum of np.
ones(dimensions) where dimensions is x.shape[1]. The search domain is [-inf, inf].

Parameters x (numpy.ndarray) – set of inputs of shape (n_particles,
dimensions)

Returns computed cost of size (n_particles,)

Return type numpy.ndarray

pyswarms.utils.functions.single_obj.schaffer2(x)
Schaffer N.2 objective function

Only takes two dimensions and has a global minimum at f([0,0]). Its coordinates are bounded within
[-100,100].

Parameters x (numpy.ndarray) – set of inputs of shape (n_particles,
dimensions)

Returns computed cost of size (n_particles,)

Return type numpy.ndarray

Raises

• IndexError – When the input dimensions is greater than what the function allows

• ValueError – When the input is out of bounds with respect to the function domain

pyswarms.utils.functions.single_obj.sphere(x)
Sphere objective function.

Has a global minimum at 0 and with a search domain of [-inf, inf]

Parameters x (numpy.ndarray) – set of inputs of shape (n_particles,
dimensions)

Returns computed cost of size (n_particles,)

Return type numpy.ndarray

pyswarms.utils.functions.single_obj.threehump(x)
Three-hump camel objective function

Only takes two dimensions and has a global minimum of 0 at f([0, 0]). Its coordinates are bounded
within [-5, 5].

Best visualized in the full domin and a range of [0, 2000].

Parameters x (numpy.ndarray) – set of inputs of shape (n_particles,
dimensions)

Returns computed cost of size (n_particles,)

Return type numpy.ndarray

Raises

• IndexError – When the input dimensions is greater than what the function allows

• ValueError – When the input is out of bounds with respect to the function domain

72 Chapter 1. Launching pad

PySwarms Documentation, Release 1.0.2

1.15.3 pyswarms.utils.plotters package

The mod:pyswarms.utils.plotters module implements various visualization capabilities to interact with your
swarm. Here, ou can plot cost history and animate your swarm in both 2D or 3D spaces.

pyswarms.utils.plotters.plotters module

Plotting tool for Optimizer Analysis

This module is built on top of matplotlib to render quick and easy plots for your optimizer. It can plot the
best cost for each iteration, and show animations of the particles in 2-D and 3-D space. Furthermore, because it
has matplotlib running under the hood, the plots are easily customizable.

For example, if we want to plot the cost, simply run the optimizer, get the cost history from the optimizer instance,
and pass it to the plot_cost_history() method

import pyswarms as ps
from pyswarms.utils.functions.single_obj import sphere
from pyswarms.utils.plotters import plot_cost_history

Set up optimizer
options = {'c1':0.5, 'c2':0.3, 'w':0.9}
optimizer = ps.single.GlobalBestPSO(n_particles=10, dimensions=2,

options=options)

Obtain cost history from optimizer instance
cost_history = optimizer.cost_history

Plot!
plot_cost_history(cost_history)
plt.show()

In case you want to plot the particle movement, it is important that either one of the matplotlib animation
Writers is installed. These doesn’t come out of the box for pyswarms, and must be installed separately. For
example, in a Linux or Windows distribution, you can install ffmpeg as

>>> conda install -c conda-forge ffmpeg

Now, if you want to plot your particles in a 2-D environment, simply pass the position history of your swarm
(obtainable from swarm instance):

import pyswarms as ps
from pyswarms.utils.functions.single_obj import sphere
from pyswarms.utils.plotters import plot_cost_history

Set up optimizer
options = {'c1':0.5, 'c2':0.3, 'w':0.9}
optimizer = ps.single.GlobalBestPSO(n_particles=10, dimensions=2,

options=options)

Obtain pos history from optimizer instance
pos_history = optimizer.pos_history

Plot!
plot_contour(pos_history)

You can also supply various arguments in this method: the indices of the specific dimensions to be used, the limits
of the axes, and the interval/ speed of animation.

1.15. Utilities 73

PySwarms Documentation, Release 1.0.2

pyswarms.utils.plotters.plotters.plot_contour(pos_history, canvas=None, ti-
tle=’Trajectory’, mark=None,
designer=None, mesher=None,
animator=None, **kwargs)

Draw a 2D contour map for particle trajectories

Here, the space is represented as a flat plane. The contours indicate the elevation with respect to the objective
function. This works best with 2-dimensional swarms with their fitness in z-space.

Parameters

• pos_history (numpy.ndarray or list) – Position history of the swarm with
shape (iteration, n_particles, dimensions)

• canvas (tuple of matplotlib.figure.Figure and matplotlib.axes.
Axes (default is None)) – The (figure, axis) where all the events will be draw. If
None is supplied, then plot will be drawn to a fresh set of canvas.

• title (str (default is 'Trajectory')) – The title of the plotted graph.

• mark (tuple (default is None)) – Marks a particular point with a red crossmark. Useful
for marking the optima.

• designer (pyswarms.utils.formatters.Designer (default is None)) – Designer class
for custom attributes

• mesher (pyswarms.utils.formatters.Mesher (default is None)) – Mesher class for mesh
plots

• animator (pyswarms.utils.formatters.Animator (default is None)) – Animator class
for custom animation

• **kwargs (dict) – Keyword arguments that are passed as a keyword argument to
matplotlib.axes.Axes plotting function

Returns The drawn animation that can be saved to mp4 or other third-party tools

Return type matplotlib.animation.FuncAnimation

pyswarms.utils.plotters.plotters.plot_cost_history(cost_history, ax=None,
title=’Cost History’, de-
signer=None, **kwargs)

Create a simple line plot with the cost in the y-axis and the iteration at the x-axis

Parameters

• cost_history (list or numpy.ndarray) – Cost history of shape (iters,
) or length iters where each element contains the cost for the given iteration.

• ax (matplotlib.axes.Axes (default is None)) – The axes where the plot is to be
drawn. If None is passed, then the plot will be drawn to a new set of axes.

• title (str (default is 'Cost History')) – The title of the plotted graph.

• designer (pyswarms.utils.formatters.Designer (default is None)) – Designer class
for custom attributes

• **kwargs (dict) – Keyword arguments that are passed as a keyword argument to
matplotlib.axes.Axes

Returns The axes on which the plot was drawn.

Return type matplotlib.axes._subplots.AxesSubplot

pyswarms.utils.plotters.plotters.plot_surface(pos_history, canvas=None, ti-
tle=’Trajectory’, designer=None,
mesher=None, animator=None,
mark=None, **kwargs)

Plot a swarm’s trajectory in 3D

74 Chapter 1. Launching pad

PySwarms Documentation, Release 1.0.2

This is useful for plotting the swarm’s 2-dimensional position with respect to the objective function. The
value in the z-axis is the fitness of the 2D particle when passed to the objective function. When preparing
the position history, make sure that the:

• first column is the position in the x-axis,

• second column is the position in the y-axis; and

• third column is the fitness of the 2D particle

The pyswarms.utils.plotters.formatters.Mesher class provides a method that prepares
this history given a 2D pos history from any optimizer.

import pyswarms as ps
from pyswarms.utils.functions.single_obj import sphere
from pyswarms.utils.plotters import plot_surface
from pyswarms.utils.plotters.formatters import Mesher

Run optimizer
options = {'c1':0.5, 'c2':0.3, 'w':0.9}
optimizer = ps.single.GlobalBestPSO(n_particles=10, dimensions=2, options)

Prepare position history
m = Mesher(func=sphere)
pos_history_3d = m.compute_history_3d(optimizer.pos_history)

Plot!
plot_surface(pos_history_3d)

Parameters

• pos_history (numpy.ndarray) – Position history of the swarm with shape
(iteration, n_particles, 3)

• objective_func (callable) – The objective function that takes a swarm of shape
(n_particles, 2) and returns a fitness array of (n_particles,)

• canvas (tuple of matplotlib.figure.Figure and) –

:param matplotlib.axes.Axes (default is None): The (figure, axis) where all the events will be draw. If None
is supplied, then plot will be drawn to a fresh set of canvas.

Parameters

• title (str (default is 'Trajectory')) – The title of the plotted graph.

• mark (tuple (default is None)) – Marks a particular point with a red crossmark. Useful
for marking the optima.

• designer (pyswarms.utils.formatters.Designer (default is None)) – Designer class
for custom attributes

• mesher (pyswarms.utils.formatters.Mesher (default is None)) – Mesher class for mesh
plots

• animator (pyswarms.utils.formatters.Animator (default is None)) – Animator class
for custom animation

• **kwargs (dict) – Keyword arguments that are passed as a keyword argument to
matplotlib.axes.Axes plotting function

Returns The drawn animation that can be saved to mp4 or other third-party tools

Return type matplotlib.animation.FuncAnimation

1.15. Utilities 75

PySwarms Documentation, Release 1.0.2

pyswarms.utils.plotters.formatters module

Plot Formatters

This module implements helpful classes to format your plots or create meshes.

class pyswarms.utils.plotters.formatters.Animator(interval: int = 80, re-
peat_delay=None, repeat:
bool = True)

Bases: object

Animator class for specifying animation behavior

You can use this class to modify options on how the animation will be run in the pyswarms.utils.
plotters.plot_contour() and pyswarms.utils.plotters.plot_surface() methods.

from pyswarms.utils.plotters import plot_contour
from pyswarms.utils.plotters.formatters import Animator

Do not repeat animation
my_animator = Animator(repeat=False)

Assuming we already had an optimizer ready
plot_contour(pos_history, animator=my_animator)

interval
int (default is 80) – Sets the interval or speed into which the animation is played.

repeat_delay
int, float (default is None) – Sets the delay before repeating the animation again.

repeat
bool (default is True) – Pass False if you don’t want to repeat the animation.

class pyswarms.utils.plotters.formatters.Designer(figsize: tuple = (10, 8),
title_fontsize=’large’,
text_fontsize=’medium’, leg-
end=’Cost’, label=[’x-axis’,
’y-axis’, ’z-axis’], limits=[(-1,
1), (-1, 1), (-1, 1)], col-
ormap=<matplotlib.colors.ListedColormap
object>)

Bases: object

Designer class for specifying a plot’s formatting and design

You can use this class for specifying design-related customizations to your plot. This can be passed in
various functions found in the pyswarms.utils.plotters module.

from pyswarms.utils.plotters import plot_cost_history
from pyswarms.utils.plotters.formatters import Designer

Set title_fontsize into 20
my_designer = Designer(title_fontsize=20)

Assuming we already had an optimizer ready
plot_cost_history(cost_history, designer=my_designer)

figsize
tuple (default is (10,8)) – Overall figure size.

title_fontsize
str, int, or float (default is large) – Size of the plot’s title.

text_fontsize
str, int, or float (default is medium) – Size of the plot’s labels and legend.

76 Chapter 1. Launching pad

PySwarms Documentation, Release 1.0.2

legend
str (default is Cost) – Label to show in the legend. For cost histories, it states the label of the line
plot.

label
str, list, or tuple (default is ['x-axis', 'y-axis', 'z-axis']) – Label to show in the x, y,
or z-axis. For a 3D plot, please pass an iterable with three elements.

limits
list (default is [(-1, 1), (-1, 1), (-1, 1)]) – The x-, y-, z- limits of the axes. Pass an
iterable with the number of elements representing the number of axes.

colormap
matplotlib.cm.Colormap (default is cm.viridis) – Colormap for contour plots

class pyswarms.utils.plotters.formatters.Mesher(func, delta: float = 0.001,
limits=[(-1, 1), (-1, 1)], levels:
list = array([-2. , -1.93, -1.86,
-1.79, -1.72, -1.65, -1.58, -1.51,
-1.44, -1.37, -1.3 , -1.23, -1.16,
-1.09, -1.02, -0.95, -0.88, -0.81,
-0.74, -0.67, -0.6 , -0.53, -0.46,
-0.39, -0.32, -0.25, -0.18, -0.11,
-0.04, 0.03, 0.1 , 0.17, 0.24, 0.31,
0.38, 0.45, 0.52, 0.59, 0.66, 0.73,
0.8 , 0.87, 0.94, 1.01, 1.08, 1.15,
1.22, 1.29, 1.36, 1.43, 1.5 , 1.57,
1.64, 1.71, 1.78, 1.85, 1.92, 1.99]),
alpha: float = 0.3)

Bases: object

Mesher class for plotting contours of objective functions

This class enables drawing a surface plot of a given objective function. You can customize how this plot is
drawn with this class. Pass an instance of this class to enable meshing.

from pyswarms.utils.plotters import plot_surface
from pyswarms.utils.plotters.formatters import Mesher
from pyswarms.utils.functions import single_obj as fx

Use sphere function
my_mesher = Mesher(func=fx.sphere)

Assuming we already had an optimizer ready
plot_surface(pos_history, mesher=my_mesher)

func
callable – Objective function to plot a surface of.

delta
float (default is 0.001) – Number of steps when generating the surface plot

limits
list, tuple (default is [(-1,1), (-1,1)]) – The range, in each axis, where the mesh will be drawn.

levels
list or int (default is np.arange(-2.0, 2.0, 0.070)) – Levels on which the contours are
shown. If int is passed, then matplotlib automatically computes for the level positions.

alpha
float (default is 0.3) – Transparency of the surface plot

limits
list (default is [(-1, 1), (-1, 1)]) – The x-, y-, z- limits of the axes. Pass an iterable with the
number of elements representing the number of axes.

1.15. Utilities 77

PySwarms Documentation, Release 1.0.2

compute_history_3d(pos_history)
Compute a 3D position matrix

The first two columns are the 2D position in the x and y axes respectively, while the third column is
the fitness on that given position.

Parameters pos_history (numpy.ndarray) – Two-dimensional position matrix his-
tory of shape (iterations, n_particles, 2)

Returns 3D position matrix of shape (iterations, n_particles, 3)

Return type numpy.ndarray

1.15.4 pyswarms.utils.reporter package

class pyswarms.utils.reporter.reporter.Reporter(log_path=None, con-
fig_path=None, logger=None,
printer=None)

Bases: object

A Reporter object that abstracts various logging capabilities

To set-up a Reporter, simply perform the following tasks:

from pyswarms.utils import Reporter

rep = Reporter()
rep.log("Here's my message", lvl=logging.INFO)

This will set-up a reporter with a default configuration that logs to a file, report.log, on the current working
directory. You can change the log path by passing a string to the log_path parameter:

from pyswarms.utils import Reporter

rep = Reporter(log_path="/path/to/log/file.log")
rep.log("Here's my message", lvl=logging.INFO)

If you are working on a module and you have an existing logger, you can pass that logger instance during
initialization:

mymodule.py
from pyswarms.utils import Reporter

An existing logger in a module
logger = logging.getLogger(__name__)
rep = Reporter(logger=logger)

Lastly, if you have your own logger configuration (YAML file), then simply pass that to the config_path
parameter. This overrides the default configuration (including log_path):

from pyswarms.utils import Reporter

rep = Reporter(config_path="/path/to/config/file.yml")
rep.log("Here's my message", lvl=logging.INFO)

__init__(log_path=None, config_path=None, logger=None, printer=None)
Initialize the reporter

log_path
str (default is None) – Sets the default log path (overriden when path is given to
_setup_logger())

config_path
str (default is None) – Sets the configuration path for custom loggers

78 Chapter 1. Launching pad

PySwarms Documentation, Release 1.0.2

logger
logging.Logger (default is None) – The logger object. By default, it creates a new Logger
instance

printer
pprint.PrettyPrinter (default is None) – A printer object. By default, it creates a
PrettyPrinter instance with default values

_load_defaults()
Load default logging configuration

_setup_logger(path=None)
Set-up the logger with default values

This method is called right after initializing the Reporter module. If no path is supplied, then it loads
a default configuration. You can view the defaults via the Reporter._default_config attribute.

Parameters path (str) – Path to a YAML configuration. If not supplied, uses a default
config.

hook(*args, **kwargs)
Set a hook on the progress bar

Method for creating a postfix in tqdm. In practice we use this to report the best cost found during an
iteration:

from pyswarms.utils import Reporter

rep = Reporter()
Create a progress bar
for i in rep.pbar(100, name="Optimizer")

best_cost = compute()
rep.hook(best_cost=best_cost)

log(msg, lvl=20, *args, **kwargs)
Log a message within a set level

This method abstracts the logging.Logger.log() method. We use this method during major state
changes, errors, or critical events during the optimization run.

You can check logging levels on this ‘link‘_. In essence, DEBUG is 10, INFO is 20, WARNING is
30, ERROR is 40, and CRITICAL is 50.

Parameters

• msg (str) – Message to be logged

• lvl (int (default is 20)) – Logging level

pbar(iters, desc=None)
Create a tqdm iterable

You can use this method to create progress bars. It uses a set of abstracted methods from tqdm:

from pyswarms.utils import Reporter

rep = Reporter()
Create a progress bar
for i in rep.pbar(100, name="Optimizer")

pass

Parameters

• iters (int) – Maximum range passed to the tqdm instance

• desc (str) – Name of the progress bar that will be displayed

Returns A tqdm iterable

1.15. Utilities 79

PySwarms Documentation, Release 1.0.2

Return type tqdm._tqdm.tqdm

print(msg, verbosity, threshold=0)
Print a message into console

This method can be called during non-system calls or minor state changes. In practice, we call this
method when reporting the cost on a given timestep.

Parameters

• msg (str) – Message to be printed

• verbosity (int) – Verbosity parameter, prints message when it’s greater than the
threshold

• threshold (int (default is 0)) – Threshold parameer, prints message
when it’s lesser than the verbosity

1.15.5 pyswarms.utils.search package

The pyswarms.utils.searchmodule implements various techniques in hyperparameter value optimization.

pyswarms.utils.search.base_search module

Base class for hyperparameter optimization search functions

class pyswarms.utils.search.base_search.SearchBase(optimizer, n_particles, dimen-
sions, options, objective_func,
iters, bounds=None, veloc-
ity_clamp=(0, 1))

Bases: object

__init__(optimizer, n_particles, dimensions, options, objective_func, iters, bounds=None, veloc-
ity_clamp=(0, 1))

Initialize the Search

optimizer
pyswarms.single – either LocalBestPSO or GlobalBestPSO

n_particles
int – number of particles in the swarm.

dimensions
int – number of dimensions in the space.

options
dict with keys {'c1', 'c2', 'w', 'k', 'p'} – a dictionary containing the parameters
for the specific optimization technique

• c1 [float] cognitive parameter
• c2 [float] social parameter
• w [float] inertia parameter
• k [int] number of neighbors to be considered. Must be a positive integer less than

n_particles
• p: int {1,2} the Minkowski p-norm to use. 1 is the sum-of-absolute values (or L1 distance)

while 2 is the Euclidean (or L2) distance.

objective_func
function – objective function to be evaluated

iters
int – number of iterations

80 Chapter 1. Launching pad

PySwarms Documentation, Release 1.0.2

bounds
tuple of np.ndarray, optional (default is None) – a tuple of size 2 where the first entry is the
minimum bound while the second entry is the maximum bound. Each array must be of shape
(dimensions,).

velocity_clamp
tuple (default is None) – a tuple of size 2 where the first entry is the minimum velocity and the
second entry is the maximum velocity. It sets the limits for velocity clamping.

assertions()
Assertion method to check optimizer input

Raises TypeError – When optimizer does not have an ‘optimize’ attribute.

generate_score(options)
Generate score for optimizer’s performance on objective function

Parameters options (dict) – a dict with the following keys: {‘c1’, ‘c2’, ‘w’, ‘k’, ‘p’}

search(maximum=False)
Compare optimizer’s objective function performance scores for all combinations of provided parame-
ters

Parameters maximum (bool) – a bool defaulting to False, returning the minimum value
for the objective function. If set to True, will return the maximum value for the objective
function.

pyswarms.utils.search.grid_search module

Hyperparameter grid search.

Compares the relative performance of hyperparameter value combinations in optimizing a specified objective
function.

For each hyperparameter, user can provide either a single value or a list of possible values. The cartesian products
of these hyperparameters are taken to produce a grid of all possible combinations. These combinations are then
tested to produce a list of objective function scores. The search method default returns the minimum objective
function score and hyperparameters that yield the minimum score, yet maximum score can also be evaluated.

>>> options = {'c1': [1, 2, 3],
'c2': [1, 2, 3],
'w' : [2, 3, 5],
'k' : [5, 10, 15],
'p' : 1}

>>> g = GridSearch(LocalBestPSO, n_particles=40, dimensions=20,
options=options, objective_func=sphere, iters=10)

>>> best_score, best_options = g.search()
>>> best_score
0.498641604188
>>> best_options['c1']
1
>>> best_options['c2']
1

class pyswarms.utils.search.grid_search.GridSearch(optimizer, n_particles, dimen-
sions, options, objective_func,
iters, bounds=None, veloc-
ity_clamp=(0, 1))

Bases: pyswarms.utils.search.base_search.SearchBase

Exhaustive search of optimal performance on selected objective function over all combinations of specified
hyperparameter values.

1.15. Utilities 81

PySwarms Documentation, Release 1.0.2

__init__(optimizer, n_particles, dimensions, options, objective_func, iters, bounds=None, veloc-
ity_clamp=(0, 1))

Initialize the Search

generate_grid()
Generate the grid of all hyperparameter value combinations

pyswarms.utils.search.random_search module

Hyperparameter random search.

Compares the relative performance of combinations of randomly generated hyperparameter values in optimizing
a specified objective function.

User provides lists of bounds for the uniform random value generation of ‘c1’, ‘c2’, and ‘w’, and the random
integer value generation of ‘k’. Combinations of values are generated for the number of iterations specified, and
the generated grid of combinations is used in the search method to find the optimal parameters for the objective
function. The search method default returns the minimum objective function score and hyperparameters that yield
the minimum score, yet maximum score can also be evaluated.

>>> options = {'c1': [1, 5],
'c2': [6, 10],
'w' : [2, 5],
'k' : [11, 15],
'p' : 1}

>>> g = RandomSearch(LocalBestPSO, n_particles=40, dimensions=20,
options=options, objective_func=sphere, iters=10)

>>> best_score, best_options = g.search()
>>> best_score
1.41978545901
>>> best_options['c1']
1.543556887693
>>> best_options['c2']
9.504769054771

class pyswarms.utils.search.random_search.RandomSearch(optimizer, n_particles,
dimensions, options,
objective_func, iters,
n_selection_iters,
bounds=None, veloc-
ity_clamp=(0, 1))

Bases: pyswarms.utils.search.base_search.SearchBase

Search of optimal performance on selected objective function over combinations of randomly selected hy-
perparameter values within specified bounds for specified number of selection iterations.

__init__(optimizer, n_particles, dimensions, options, objective_func, iters, n_selection_iters,
bounds=None, velocity_clamp=(0, 1))

Initialize the Search

n_selection_iters
int – number of iterations of random parameter selection

assertions()
Assertion method to check n_selection_iters input

Raises TypeError – When n_selection_iters is not of type int

generate_grid()
Generate the grid of hyperparameter value combinations

82 Chapter 1. Launching pad

CHAPTER 2

Indices and tables

• genindex

• modindex

• search

83

PySwarms Documentation, Release 1.0.2

84 Chapter 2. Indices and tables

Bibliography

[CI2007] 1. Engelbrecht, “An Introduction to Computational Intelligence,” John Wiley & Sons, 2007.

[IJCNN1995] 10. Kennedy and R.C. Eberhart, “Particle Swarm Optimization,” Proceedings of the IEEE Inter-
national Joint Conference on Neural Networks, 1995, pp. 1942-1948.

[ICEC2008] 25. Shi and R.C. Eberhart, “A modified particle swarm optimizer,” Proceedings of the IEEE Inter-
national Conference on Evolutionary Computation, 1998, pp. 69-73.

[IJCNN1995] J. Kennedy and R.C. Eberhart, “Particle Swarm Optimization,” Proceedings of the IEEE Interna-
tional Joint Conference on Neural Networks, 1995, pp. 1942-1948.

[IJCNN1995] J. Kennedy and R.C. Eberhart, “Particle Swarm Optimization,” Proceedings of the IEEE Interna-
tional Joint Conference on Neural Networks, 1995, pp. 1942-1948.

[MHS1995] J. Kennedy and R.C. Eberhart, “A New Optimizer using Particle Swarm Theory,” in Proceedings of
the Sixth International Symposium on Micromachine and Human Science, 1995, pp. 39–43.

[IJCNN1995] J. Kennedy and R.C. Eberhart, “Particle Swarm Optimization,” Proceedings of the IEEE Interna-
tional Joint Conference on Neural Networks, 1995, pp. 1942-1948.

[SMC1997] J. Kennedy and R.C. Eberhart, “A discrete binary version of particle swarm algorithm,” Proceedings
of the IEEE International Conference on Systems, Man, and Cybernetics, 1997.

85

PySwarms Documentation, Release 1.0.2

86 Bibliography

Python Module Index

p
pyswarms.backend.generators, 37
pyswarms.backend.handlers, 43
pyswarms.backend.operators, 41
pyswarms.backend.topology.base, 47
pyswarms.backend.topology.pyramid, 51
pyswarms.backend.topology.random, 53
pyswarms.backend.topology.ring, 49
pyswarms.backend.topology.star, 47
pyswarms.backend.topology.von_neumann,

50
pyswarms.base, 56
pyswarms.base.base_discrete, 58
pyswarms.base.base_single, 56
pyswarms.discrete, 66
pyswarms.discrete.binary, 66
pyswarms.single, 60
pyswarms.single.general_optimizer, 63
pyswarms.single.global_best, 60
pyswarms.single.local_best, 61
pyswarms.utils.decorators, 67
pyswarms.utils.functions, 68
pyswarms.utils.functions.single_obj,

68
pyswarms.utils.plotters, 73
pyswarms.utils.plotters.formatters, 76
pyswarms.utils.plotters.plotters, 73
pyswarms.utils.reporter.reporter, 78
pyswarms.utils.search, 80
pyswarms.utils.search.base_search, 80
pyswarms.utils.search.grid_search, 81
pyswarms.utils.search.random_search,

82

87

PySwarms Documentation, Release 1.0.2

88 Python Module Index

Index

Symbols
__call__() (pyswarms.backend.handlers.BoundaryHandler

method), 44
__call__() (pyswarms.backend.handlers.VelocityHandler

method), 46
__init__() (pyswarms.backend.handlers.BoundaryHandler

method), 44
__init__() (pyswarms.backend.handlers.VelocityHandler

method), 46
__init__() (pyswarms.backend.topology.base.Topology

method), 47
__init__() (pyswarms.backend.topology.pyramid.Pyramid

method), 51
__init__() (pyswarms.backend.topology.random.Random

method), 53
__init__() (pyswarms.backend.topology.ring.Ring

method), 49
__init__() (pyswarms.backend.topology.star.Star

method), 48
__init__() (pyswarms.backend.topology.von_neumann.VonNeumann

method), 51
__init__() (pyswarms.base.base_discrete.DiscreteSwarmOptimizer

method), 58
__init__() (pyswarms.base.base_single.SwarmOptimizer

method), 56
__init__() (pyswarms.discrete.binary.BinaryPSO

method), 66
__init__() (pyswarms.single.general_optimizer.GeneralOptimizerPSO

method), 64
__init__() (pyswarms.single.global_best.GlobalBestPSO

method), 60
__init__() (pyswarms.single.local_best.LocalBestPSO

method), 62
__init__() (pyswarms.utils.reporter.reporter.Reporter

method), 78
__init__() (pyswarms.utils.search.base_search.SearchBase

method), 80
__init__() (pyswarms.utils.search.grid_search.GridSearch

method), 81
__init__() (pyswarms.utils.search.random_search.RandomSearch

method), 82
_abc_impl (pyswarms.base.base_discrete.DiscreteSwarmOptimizer

attribute), 59

_abc_impl (pyswarms.base.base_single.SwarmOptimizer
attribute), 57

_abc_impl (pyswarms.single.general_optimizer.GeneralOptimizerPSO
attribute), 65

_abc_impl (pyswarms.single.local_best.LocalBestPSO
attribute), 63

_load_defaults() (pyswarms.utils.reporter.reporter.Reporter
method), 79

_populate_history() (pyswarms.base.base_discrete.DiscreteSwarmOptimizer
method), 59

_populate_history() (pyswarms.base.base_single.SwarmOptimizer
method), 57

_setup_logger() (pyswarms.utils.reporter.reporter.Reporter
method), 79

A
ackley() (in module

pyswarms.utils.functions.single_obj), 68
adjust() (pyswarms.backend.handlers.VelocityHandler

method), 41, 46
alpha (pyswarms.utils.plotters.formatters.Mesher at-

tribute), 77
Animator (class in pyswarms.utils.plotters.formatters),

76
assertions() (pyswarms.utils.search.base_search.SearchBase

method), 81
assertions() (pyswarms.utils.search.random_search.RandomSearch

method), 82

B
beale() (in module pyswarms.utils.functions.single_obj),

68
best_cost (pyswarms.backend.swarms.Swarm at-

tribute), 56
best_pos (pyswarms.backend.swarms.Swarm attribute),

55
bh_strategy (pyswarms.single.general_optimizer.GeneralOptimizerPSO

attribute), 65
bh_strategy (pyswarms.single.global_best.GlobalBestPSO

attribute), 61
bh_strategy (pyswarms.single.local_best.LocalBestPSO

attribute), 62
binary (pyswarms.base.base_discrete.DiscreteSwarmOptimizer

attribute), 58

89

PySwarms Documentation, Release 1.0.2

BinaryPSO (class in pyswarms.discrete.binary), 66
booth() (in module pyswarms.utils.functions.single_obj),

68
BoundaryHandler (class in

pyswarms.backend.handlers), 39, 44
bounds (pyswarms.base.base_single.SwarmOptimizer

attribute), 57
bounds (pyswarms.single.general_optimizer.GeneralOptimizerPSO

attribute), 65
bounds (pyswarms.single.global_best.GlobalBestPSO

attribute), 61
bounds (pyswarms.single.local_best.LocalBestPSO at-

tribute), 62
bounds (pyswarms.utils.search.base_search.SearchBase

attribute), 80
bukin6() (in module

pyswarms.utils.functions.single_obj), 69

C
center (pyswarms.base.base_single.SwarmOptimizer

attribute), 57
center (pyswarms.single.general_optimizer.GeneralOptimizerPSO

attribute), 65
center (pyswarms.single.global_best.GlobalBestPSO

attribute), 61
center (pyswarms.single.local_best.LocalBestPSO at-

tribute), 63
colormap (pyswarms.utils.plotters.formatters.Designer

attribute), 77
compute_gbest() (pyswarms.backend.topology.base.Topology

method), 47
compute_gbest() (pyswarms.backend.topology.pyramid.Pyramid

method), 51
compute_gbest() (pyswarms.backend.topology.random.Random

method), 53
compute_gbest() (pyswarms.backend.topology.ring.Ring

method), 49
compute_gbest() (pyswarms.backend.topology.star.Star

method), 48
compute_gbest() (pyswarms.backend.topology.von_neumann.VonNeumann

method), 51
compute_history_3d() (pyswarms.utils.plotters.formatters.Mesher

method), 77
compute_objective_function() (in module

pyswarms.backend.operators), 41
compute_pbest() (in module

pyswarms.backend.operators), 42
compute_position() (in module

pyswarms.backend.operators), 42
compute_position() (pyswarms.backend.topology.base.Topology

method), 47
compute_position() (pyswarms.backend.topology.pyramid.Pyramid

method), 52
compute_position() (pyswarms.backend.topology.random.Random

method), 53
compute_position() (pyswarms.backend.topology.ring.Ring

method), 49

compute_position() (pyswarms.backend.topology.star.Star
method), 48

compute_velocity() (in module
pyswarms.backend.operators), 43

compute_velocity() (pyswarms.backend.topology.base.Topology
method), 47

compute_velocity() (pyswarms.backend.topology.pyramid.Pyramid
method), 52

compute_velocity() (pyswarms.backend.topology.random.Random
method), 54

compute_velocity() (pyswarms.backend.topology.ring.Ring
method), 50

compute_velocity() (pyswarms.backend.topology.star.Star
method), 48

config_path (pyswarms.utils.reporter.reporter.Reporter
attribute), 78

cost() (in module pyswarms.utils.decorators), 67
create_swarm() (in module

pyswarms.backend.generators), 37
crossintray() (in module

pyswarms.utils.functions.single_obj), 69
current_cost (pyswarms.backend.swarms.Swarm

attribute), 56

D
delannoy() (pyswarms.backend.topology.von_neumann.VonNeumann

static method), 51
delta (pyswarms.utils.plotters.formatters.Mesher

attribute), 77
Designer (class in pyswarms.utils.plotters.formatters),

76
dimensions (pyswarms.backend.swarms.Swarm at-

tribute), 55
dimensions (pyswarms.base.base_discrete.DiscreteSwarmOptimizer

attribute), 58
dimensions (pyswarms.base.base_single.SwarmOptimizer

attribute), 57
dimensions (pyswarms.discrete.binary.BinaryPSO at-

tribute), 66
dimensions (pyswarms.single.general_optimizer.GeneralOptimizerPSO

attribute), 64
dimensions (pyswarms.single.global_best.GlobalBestPSO

attribute), 61
dimensions (pyswarms.single.local_best.LocalBestPSO

attribute), 62
dimensions (pyswarms.utils.search.base_search.SearchBase

attribute), 80
DiscreteSwarmOptimizer (class in

pyswarms.base.base_discrete), 58

E
easom() (in module

pyswarms.utils.functions.single_obj), 69
eggholder() (in module

pyswarms.utils.functions.single_obj), 70

F
figsize (pyswarms.utils.plotters.formatters.Designer at-

90 Index

PySwarms Documentation, Release 1.0.2

tribute), 76
ftol (pyswarms.base.base_single.SwarmOptimizer at-

tribute), 57
ftol (pyswarms.discrete.binary.BinaryPSO attribute), 67
ftol (pyswarms.single.general_optimizer.GeneralOptimizerPSO

attribute), 65
ftol (pyswarms.single.global_best.GlobalBestPSO at-

tribute), 61
ftol (pyswarms.single.local_best.LocalBestPSO at-

tribute), 63
func (pyswarms.utils.plotters.formatters.Mesher

attribute), 77

G
GeneralOptimizerPSO (class in

pyswarms.single.general_optimizer), 64
generate_discrete_swarm() (in module

pyswarms.backend.generators), 38
generate_grid() (pyswarms.utils.search.grid_search.GridSearch

method), 82
generate_grid() (pyswarms.utils.search.random_search.RandomSearch

method), 82
generate_score() (pyswarms.utils.search.base_search.SearchBase

method), 81
generate_swarm() (in module

pyswarms.backend.generators), 38
generate_velocity() (in module

pyswarms.backend.generators), 39
GlobalBestPSO (class in pyswarms.single.global_best),

60
goldstein() (in module

pyswarms.utils.functions.single_obj), 70
GridSearch (class in

pyswarms.utils.search.grid_search), 81

H
HandlerMixin (class in pyswarms.backend.handlers),

41, 46
himmelblau() (in module

pyswarms.utils.functions.single_obj), 70
holdertable() (in module

pyswarms.utils.functions.single_obj), 71
hook() (pyswarms.utils.reporter.reporter.Reporter

method), 79

I
init_pos (pyswarms.discrete.binary.BinaryPSO at-

tribute), 67
init_pos (pyswarms.single.general_optimizer.GeneralOptimizerPSO

attribute), 65
init_pos (pyswarms.single.global_best.GlobalBestPSO

attribute), 61
init_pos (pyswarms.single.local_best.LocalBestPSO at-

tribute), 63
intermediate() (pyswarms.backend.handlers.BoundaryHandler

method), 39, 44
interval (pyswarms.utils.plotters.formatters.Animator

attribute), 76

invert() (pyswarms.backend.handlers.VelocityHandler
method), 41, 47

iters (pyswarms.utils.search.base_search.SearchBase
attribute), 80

L
label (pyswarms.utils.plotters.formatters.Designer at-

tribute), 77
legend (pyswarms.utils.plotters.formatters.Designer at-

tribute), 76
levels (pyswarms.utils.plotters.formatters.Mesher at-

tribute), 77
levi() (in module pyswarms.utils.functions.single_obj),

71
limits (pyswarms.utils.plotters.formatters.Designer at-

tribute), 77
limits (pyswarms.utils.plotters.formatters.Mesher at-

tribute), 77
LocalBestPSO (class in pyswarms.single.local_best),

62
log() (pyswarms.utils.reporter.reporter.Reporter

method), 79
log_path (pyswarms.utils.reporter.reporter.Reporter at-

tribute), 78
logger (pyswarms.utils.reporter.reporter.Reporter at-

tribute), 79

M
matyas() (in module

pyswarms.utils.functions.single_obj), 71
Mesher (class in pyswarms.utils.plotters.formatters), 77

N
n_particles (pyswarms.backend.swarms.Swarm at-

tribute), 55
n_particles (pyswarms.base.base_discrete.DiscreteSwarmOptimizer

attribute), 58
n_particles (pyswarms.base.base_single.SwarmOptimizer

attribute), 57
n_particles (pyswarms.discrete.binary.BinaryPSO at-

tribute), 66
n_particles (pyswarms.single.general_optimizer.GeneralOptimizerPSO

attribute), 64
n_particles (pyswarms.single.global_best.GlobalBestPSO

attribute), 61
n_particles (pyswarms.single.local_best.LocalBestPSO

attribute), 62
n_particles (pyswarms.utils.search.base_search.SearchBase

attribute), 80
n_selection_iters (pyswarms.utils.search.random_search.RandomSearch

attribute), 82
nearest() (pyswarms.backend.handlers.BoundaryHandler

method), 39, 45

O
objective_func (pyswarms.utils.search.base_search.SearchBase

attribute), 80

Index 91

PySwarms Documentation, Release 1.0.2

optimize() (pyswarms.base.base_discrete.DiscreteSwarmOptimizer
method), 59

optimize() (pyswarms.base.base_single.SwarmOptimizer
method), 57

optimize() (pyswarms.discrete.binary.BinaryPSO
method), 67

optimize() (pyswarms.single.general_optimizer.GeneralOptimizerPSO
method), 65

optimize() (pyswarms.single.global_best.GlobalBestPSO
method), 61

optimize() (pyswarms.single.local_best.LocalBestPSO
method), 63

optimizer (pyswarms.utils.search.base_search.SearchBase
attribute), 80

options (pyswarms.backend.swarms.Swarm attribute),
55

options (pyswarms.base.base_discrete.DiscreteSwarmOptimizer
attribute), 58, 59

options (pyswarms.base.base_single.SwarmOptimizer
attribute), 57

options (pyswarms.discrete.binary.BinaryPSO at-
tribute), 66

options (pyswarms.single.general_optimizer.GeneralOptimizerPSO
attribute), 64

options (pyswarms.single.global_best.GlobalBestPSO
attribute), 61

options (pyswarms.single.local_best.LocalBestPSO at-
tribute), 63

options (pyswarms.utils.search.base_search.SearchBase
attribute), 80

P
pbar() (pyswarms.utils.reporter.reporter.Reporter

method), 79
pbest_cost (pyswarms.backend.swarms.Swarm at-

tribute), 56
pbest_pos (pyswarms.backend.swarms.Swarm at-

tribute), 55
periodic() (pyswarms.backend.handlers.BoundaryHandler

method), 40, 45
plot_contour() (in module

pyswarms.utils.plotters.plotters), 73
plot_cost_history() (in module

pyswarms.utils.plotters.plotters), 74
plot_surface() (in module

pyswarms.utils.plotters.plotters), 74
position (pyswarms.backend.swarms.Swarm attribute),

55
print() (pyswarms.utils.reporter.reporter.Reporter

method), 80
printer (pyswarms.utils.reporter.reporter.Reporter at-

tribute), 79
Pyramid (class in pyswarms.backend.topology.pyramid),

51
pyswarms.backend.generators (module), 37
pyswarms.backend.handlers (module), 39, 43
pyswarms.backend.operators (module), 41
pyswarms.backend.topology.base (module), 47

pyswarms.backend.topology.pyramid (module), 51
pyswarms.backend.topology.random (module), 53
pyswarms.backend.topology.ring (module), 49
pyswarms.backend.topology.star (module), 47
pyswarms.backend.topology.von_neumann (module),

50
pyswarms.base (module), 56
pyswarms.base.base_discrete (module), 58
pyswarms.base.base_single (module), 56
pyswarms.discrete (module), 66
pyswarms.discrete.binary (module), 66
pyswarms.single (module), 60
pyswarms.single.general_optimizer (module), 63
pyswarms.single.global_best (module), 60
pyswarms.single.local_best (module), 61
pyswarms.utils.decorators (module), 67
pyswarms.utils.functions (module), 68
pyswarms.utils.functions.single_obj (module), 68
pyswarms.utils.plotters (module), 73
pyswarms.utils.plotters.formatters (module), 76
pyswarms.utils.plotters.plotters (module), 73
pyswarms.utils.reporter.reporter (module), 78
pyswarms.utils.search (module), 80
pyswarms.utils.search.base_search (module), 80
pyswarms.utils.search.grid_search (module), 81
pyswarms.utils.search.random_search (module), 82

R
Random (class in pyswarms.backend.topology.random),

53
random() (pyswarms.backend.handlers.BoundaryHandler

method), 40, 45
RandomSearch (class in

pyswarms.utils.search.random_search),
82

rastrigin() (in module
pyswarms.utils.functions.single_obj), 71

reflective() (pyswarms.backend.handlers.BoundaryHandler
method), 40, 45

repeat (pyswarms.utils.plotters.formatters.Animator at-
tribute), 76

repeat_delay (pyswarms.utils.plotters.formatters.Animator
attribute), 76

Reporter (class in pyswarms.utils.reporter.reporter), 78
reset() (pyswarms.base.base_discrete.DiscreteSwarmOptimizer

method), 59
reset() (pyswarms.base.base_single.SwarmOptimizer

method), 57
Ring (class in pyswarms.backend.topology.ring), 49
rosenbrock() (in module

pyswarms.utils.functions.single_obj), 72

S
schaffer2() (in module

pyswarms.utils.functions.single_obj), 72
search() (pyswarms.utils.search.base_search.SearchBase

method), 81

92 Index

PySwarms Documentation, Release 1.0.2

SearchBase (class in
pyswarms.utils.search.base_search), 80

shrink() (pyswarms.backend.handlers.BoundaryHandler
method), 40, 45

sphere() (in module
pyswarms.utils.functions.single_obj), 72

Star (class in pyswarms.backend.topology.star), 48
static (pyswarms.single.local_best.LocalBestPSO at-

tribute), 63
strategy (pyswarms.backend.handlers.BoundaryHandler

attribute), 44
Swarm (class in pyswarms.backend.swarms), 55
SwarmOptimizer (class in pyswarms.base.base_single),

56

T
text_fontsize (pyswarms.utils.plotters.formatters.Designer

attribute), 76
threehump() (in module

pyswarms.utils.functions.single_obj), 72
title_fontsize (pyswarms.utils.plotters.formatters.Designer

attribute), 76
Topology (class in pyswarms.backend.topology.base),

47
topology (pyswarms.single.general_optimizer.GeneralOptimizerPSO

attribute), 65

U
unmodified() (pyswarms.backend.handlers.VelocityHandler

method), 41, 47

V
velocity (pyswarms.backend.swarms.Swarm attribute),

55
velocity_clamp (pyswarms.base.base_discrete.DiscreteSwarmOptimizer

attribute), 59
velocity_clamp (pyswarms.base.base_single.SwarmOptimizer

attribute), 57
velocity_clamp (pyswarms.discrete.binary.BinaryPSO

attribute), 67
velocity_clamp (pyswarms.single.general_optimizer.GeneralOptimizerPSO

attribute), 65
velocity_clamp (pyswarms.single.global_best.GlobalBestPSO

attribute), 61
velocity_clamp (pyswarms.single.local_best.LocalBestPSO

attribute), 63
velocity_clamp (pyswarms.utils.search.base_search.SearchBase

attribute), 81
VelocityHandler (class in pyswarms.backend.handlers),

41, 46
vh_strategy (pyswarms.discrete.binary.BinaryPSO at-

tribute), 67
vh_strategy (pyswarms.single.general_optimizer.GeneralOptimizerPSO

attribute), 65
vh_strategy (pyswarms.single.global_best.GlobalBestPSO

attribute), 61
vh_strategy (pyswarms.single.local_best.LocalBestPSO

attribute), 63

VonNeumann (class in
pyswarms.backend.topology.von_neumann),
51

Z
zero() (pyswarms.backend.handlers.VelocityHandler

method), 41, 47

Index 93

	Launching pad
	Introduction
	Features
	Installation
	Credits
	History
	Tutorials
	Use-cases
	Contributing
	Understanding the PySwarms API
	Writing your own optimization loop
	Contributing your own optimizer
	Backend
	Base Classes
	Optimizers
	Utilities

	Indices and tables
	Bibliography
	Python Module Index

